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Executive Summary 

The Aerospace Corporation (Aerospace) Civil Systems Group (CSG) Civil Spectrum Engineering and 
Management branch1 was commissioned by the GOES-R Program Office to conduct a socioeconomic 
benefits study of the GOES-R Series system. Under this task, an Aerospace team developed initial 
estimates of the socioeconomic benefits of the GOES-R Series system in both qualitative and quantifiable 
terms for a limited number of NOAA products and services whose contributions from GOES-R data 
could be determined. These are primarily National Weather Service (NWS) products and services but also 
include other benefit areas attributable to GOES-R.  

In the first phase of this study, previously published, the team selected an NWS forecast product area as a 
pathfinder for which there was significant monetary and human value from the GOES-R data 
contribution. The GOES-R contribution to four hurricane forecast attributes was estimated to be $8.4B 
(2020$) over the life of the system [Lubar et al. 2021]. 

In this second phase of the GOES-R Socioeconomic Benefits Study, our goal was to undertake 
preliminary assessments of multiple other GOES-R-related benefits areas. To accomplish this, our 
objectives were to pursue the additional product/benefit areas for analysis and valuation by (1) using 
benefit transfers from other existing relevant studies and (2) utilizing the NESDIS TPIO NOAA 
Observing Systems Integrated Analysis (NOSIA) GOES-R refresh data for the GOES-R contribution 
percentages. This assessment must be understood to be preliminary due to limited resources (manpower 
and time). 

To facilitate our analysis, the NOSIA II GOES-R refresh data provided us with initial estimates of GOES-
R contribution percentages for several NWS products based on NESDIS/TPIO’s expert-elicitation-type 
survey process of numerous NWS Weather Forecast Office (WFO) and Center personnel. 

For Phase 2 work we undertook analysis for the following benefit areas: 

1. Extreme weather  
a. Wildfires 
b. Winter storms 
c. Flash flood and riverine flood warnings 
d. Severe thunderstorms and tornadoes 
e. Drought 

2. General public forecasts and warnings 
3. Air quality 
4. Aviation weather 

a. Weather-related delays 
5. Unique Payload Services (UPS) 

a. Search and rescue 
b. DCS data communication 

i. Riverine flooding 
ii. NOAA’s Physical Oceanographic Real-Time System (PORTS®) 

6. Climate policy 
7. Benchmarking 

Employing heuristically developed average percentages for loss and avoidance costs attributable to 
weather, in combination with the NOSIA II GOES-R refresh data, we make preliminary but reasonable 

 
1 Under NSEETS Contract # 80GSC19D0011 
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estimates of the value of GOES-R data to each benefit area. In addition, we assess overall GOES-R 
contribution values using “benchmarking” as a top-down approach to quantifying the total economic 
value of weather information across the entire economy.  

Table 1 shows the benefit areas, the impact evaluated, the baseline annual benefits (in millions of 2020 
dollars) derived for each benefit area and the baseline aggregated benefit (in billions of 2020 dollars). The 
last column in Table 1 shows estimates for all benefit areas and methods using the baseline parameters at 
a discount rate of 1.185%. 

The work associated with the GOES-R Advanced Baseline Imager (ABI) is directly relevant to 
Geostationary Extended Observations (GeoXO), not accounting for the increased resolution of the 
GeoXO-era instrument. 
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Table 1.  GOES-R Benefit Estimates for Various Benefit Areas 
(Baseline Parameters with Discount Rate 1.185%) 

 
Impact Evaluated Baseline Annual 

Benefits 
Millions 2020$ 

Present Value of Benefits 
Billions 2020$ 

Extreme Weather  n/a n/a n/a 
Hurricanes (Phase 1) Willingness to pay (WTP) 312.16 8.36 
Wildfires Reduced costs with early detection 316.57 9.68 
Winter Storms Reduced “billion-dollar” disasters 33.26 0.84 
Flash Flooding—Riverine Flood Warnings  Reduced fatalities 18.44 0.55 
Flash Flooding—Riverine Flood Warnings Reduced damages 3.82 0.11 
Severe Thunderstorms and Tornadoes Reduced fatalities 64.60 1.94 
Drought Reduced billion-dollar disasters 60.70 1.82 
General Public Forecasts and Warnings WTP 875.26 26.24 
Air Quality Reduced fatalities 33.29 1.00 
Aviation Weather Reduced weather-related delays 470.34 19.67 
Unique Payload Services n/a n/a n/a 
Search and Rescue Reduced fatalities 44.34 1.30 
Data Collection System (DCS) data communication n/a n/a n/a 
   Riverine flooding Reduced flood damages 0.42 0.01 
   PORTS® Lower property losses and oil pollution remediation 

costs / reduced fatalities 
2.64 0.08 

Climate Policy Reduced climate impacts 270.15 8.10 
Benchmarking Reduced negative / increased positive impacts on 

Gross Domestic Product (GDP) 
1,872.99 45.66 
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We caution that these benefit estimates cannot be simply added across all the benefit areas to derive total 
socioeconomic benefit estimate of the GOES-R program. For several of these benefit areas there are 
overlaps with other benefit areas. For instance, benefits from reduced impacts in aviation may implicitly 
include benefits already partly assessed in other areas such as winter storms, severe weather, wildfire, and 
even public forecasts. In addition, some of the methods, such as benchmarking, are essentially different 
approaches to the same problem. 

We emphasize a few “caveats” with respect to interpreting and using the benefit estimates derived at this 
point. For the most part, the results reported here should be considered preliminary as there are significant 
degrees of uncertainty due to limited information to quantify each step in the “value chain.” We also note 
that, although several of the benefit estimates are reported to two digits, in general for most of the benefit 
areas, there is significantly more uncertainty as some of the initial factors used in the analysis are 
subjective and likely reliable only to an order of magnitude. In that sense, some of the benefit areas are 
“strawmen” intended to suggest potentially important or interesting benefit areas for future analysis. The 
logic model developed in some areas should be further discussed and evaluated to determine if it could be 
built upon to derive more valid and reliable benefit estimates. 

Based upon our experience with executing this study, we submit the following ideas for future 
considerations and efforts: 

• An effort to assess all GOES-R-related product values would be a considerably larger task (in 
time, manpower, and funding) than the effort in this study. As with any economic analysis, the 
resources to be applied to the analysis should be based on the desired use of the information and 
outcomes. 

• Our team has made recommendations in each benefit area, especially for any socioeconomic 
assessment that refines the approach and additional evaluations to improve the methodologies 
used in Phase 2. These are summarized in the concluding discussion section.  

• It is critical that NOAA not “reinvent the wheel” with every new socioeconomic benefits study. 
We hope this effort increases the body of socioeconomic knowledge on the GOES-R technical 
side and the understanding of the GOES-R program and products on the economics side that can 
better support future studies. 

We also hope that our study will better inform the future GeoXO efforts on the benefits and values of 
capabilities potentially contributing to the NWS Weather Ready Nation (WRN) Mission Service Areas 
(MSAs) covered herein. 

We have not assessed costs but feel the benefits evaluated here (even with reasonable uncertainty 
bounds), as well as the Phase 1 work on hurricanes, demonstrate that the benefits of GOES-R likely will 
outweigh the investment made by the government in this program. Finally, we note that we focus on the 
potential benefit domestically and thus underestimate the regional or global socioeconomic benefits. 
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1. Introduction 

1.1 Geostationary Operational Environmental Satellite – R Series (GOES-R) Overview 

The ability of meteorologists and scientists to continuously view weather from space originated in the 
mid-1960s when the Spin-Scan Camera was flown as a payload on the Applications Technology Satellites 
(ATS) I and III. This camera, the invention of Dr. Verner E. Suomi (widely recognized as the “Father of 
Satellite Meteorology”), from the University of Wisconsin-Madison, allowed scientists to view the clouds 
moving across the planet (See Figure 1 made by Dr. Suomi’s Spin-Scan Cloud Camera, December 11, 
1966). Prior satellites, in non-geostationary orbit, were always moving with respect to the planet. Once 
this product was operationalized, “using these images, it was possible to measure and track air motion, 
cloud heights, rainfall, even pollution and natural disasters” [University of Wisconsin – Madison, SSEC, 
1996]. 

 
Figure 1.  Spin-Scan Camera – A two-dimensional Image of Earth. 

Following in succession were predecessor satellites to GOES-R, (e.g., Synchronous Meteorological 
Satellite [SMS], and earlier versions of GOES), that pursued similar objectives as today’s satellites: 
“Provide the primary source of near-real-time visible / infrared observations for short term weather 
forecasting and imaging of severe weather events.” [Goodman, S.J., 2020] 

GOES-R series capabilities have continued this evolution from simple imagery to provide multiple bands 
of visible and IR imagery, numerous space weather observations, and lightning detection from the cloud-
top view (Figure 2), “as it provides life-saving observations of high-impact environmental phenomena 
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such as severe storms, hurricanes, fires, and volcanic eruptions across Earth’s Western Hemisphere 
throughout the day and night.” [Goodman, S.J., 2020] 

 
Figure 2.  Full disk, first light image from GOES-16. 

Today’s GOES-R products contribute to understanding tropical cyclones, support to aviation operations, 
analysis of water vapor imagery to better understand large-scale weather patterns, tracking fires, obtaining 
cloud and fog information, understanding convective initiation and monitoring of convective events, 
aerosol products useful in determining impacts from particulate matter (especially from dust and smoke), 
surface features such as snow cover, understanding of cloud-to-cloud lightning structures, and space 
weather measurements. Imagery from GOES-R provides situational awareness and information to 
forecasters. GOES-R data are also used as one of many data inputs assimilated into several numerical 
weather prediction models. 

The end users of GOES-R imagery can provide some of the best examples of how this system supports 
environmental and meteorological applications. For instance, this December 21, 2021, image across 
Florida from a National Weather Service (NWS) Jacksonville (FL) Weather Forecast Office (WFO) tweet 
compares the GeoColor image of the cloud tops from GOES-R (left), while the right includes Day Cloud-
Phase Red Green Blue (RGB) to highlight details (Figure 3). 
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Figure 3.  Comparison of GOES-R images using different instrument band combinations (source: NOAA). 

The GOES-R series features multiple image and data products, including 16 bands of visible or IR images 
of either the full Earth disk, the continental United States (CONUS) or 1000 km × 1000 km mesoscale 
sectors, space weather products, and lightning mapper optical transients of total lightning. There are 
approximately 43 separate product categories from GOES-R, some of which produce more than 1 type of 
product. All of these contribute to hundreds of meteorological end-user-derived products. 

The path from GOES-R satellite product or products to end-user-derived meteorological products is not 
always straightforward, with some data being used directly and other inputs from in situ measurements 
and radar outputs used in conjunction with satellite data. 

1.2 NESDIS/Technology, Planning and Integration for Observation (TPIO) NOAA 
Observing Systems Integrated Analysis (NOSIA) II 

This Phase 2 assessment utilizes data on the GOES-R series as collected by the NOSIA 2.1 study 
conducted by NOAA’s TPIO Office to arrive at an estimated percent contribution from GOES-R to a 
given area. Our team worked with National Environmental Satellite Data and Information Services 
(NESDIS)/TPIO NOSIA 2.1 team for this effort. We resolved that NOSIA 2.1 data would be useful to our 
Phase 2 efforts since they had been refreshing their analysis data to include GOES-R (the original NOSIA 
II only included GOES N-O-P series [Geostationary Operational Environmental Satellite – R, O, and P 
Series] data). The NOSIA 2.1 data provided us an initial best alternative to performing expert elicitations 
of GOES-R-related contributions to each benefit area given our limited study resources (people, time, and 
funding). 

The NESDIS/TPIO NOSIA analysis process utilizes surveys of NWS members from various WFOs and 
Centers to evaluate, document, and create a database for the impact and importance of various NOAA 
observing systems to NWS products and services. To classify these data, TPIO used the NOAA Value 
Tree and derived Weather Ready Nation (WRN) Mission Service Areas (MSAs) depicted in Figure 4 
[Yapur, 2020]. A primary element of the NOAA Value Tree (left) is the MSAs of which the NWS WRN 
MSAs are shown on the right. 
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Figure 4.  NOAA Value Tree and NWS WRN MSAs [Yapur 2020]. 
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TPIO examines all the models that directly contribute to products in the NOAA MSAs as indicated in 
Figure 5. Then they identify all GOES-based data sources used by those models specifically. They also 
look at non-model use of GOES for products. TPIO calculates the impact of those specific GOES data 
sources and then determines the difference in impact across all MSAs, outcomes, and key products 
associated with those MSAs. While our analysis focuses primarily on WRN MSAs, which represent most 
of the NWS missions, we also examine portions of other MSAs, including Marine Transportation (RC-
MTS) and Climate Policy (CLI).  

 
Figure 5.  NOAA’s MSAs and GOES-R benefit areas assessed here [Yapur 2020]. 

Figure 5 cross-references applicable NWS WRN MSAs with most of the GOES-R benefit areas we 
assessed in this study. 

As is evident from the Sankey Diagram2 in Figure 6, the GOES-R relationships and connections with the 
various MSAs and sub-areas are varied and complex but also very extensive. There are three columns in 
the Sankey diagram. From left to right, they are Program Groups, MSAs, and Societal Benefit Areas. Any 
connection from GOES to the second column or from anything with a connection to GOES in the second 
column that is connected to the third is colored blue. 

 
2 “A Sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are 
called nodes and the connections are called links.” (text from 
https://developers.google.com/chart/interactive/docs/gallery/sankey) The key to reading and interpreting Sankey diagrams is 
remembering that the width is proportional to the quantity represented. The Sankey diagram displays how quantities are 
distributed among items between two or more stages.) 

https://developers.google.com/chart/interactive/docs/gallery/sankey
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Figure 6.  Sankey diagram of the NOAA observing systems, MSAs, and societal benefit areas. GOES-R relationships highlighted in blue [TPIO 2021]. 
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Table 2 shows the GOES-R contribution percentages to specific benefit areas used in this analysis. The 
NESDIS TPIO NOSIA II team surveyed hundreds of NWS Center and WFO personnel over several years 
and compiled all their survey data into a GOES-R refresh we refer to as “NOSIA 2.1.” Furthermore, our 
study team had the TPIO NOSIA II team perform several analyses of their GOES-R data to synthesize it 
down to the single GOES-R contribution/impact percentage for the first seven focus (or benefit) areas 
listed in Table 2 below. 

Table 2.  TPIO Data on GOES-R Contributions 

Focus Area TPIO GOES-R Contribution 
Fire Weather 14.02% 

Winter Weather 11.19% 
Integrated Water and Prediction Information 10.24% 

Severe Weather 13.96% 
Public Weather 6.38% 

Air Quality 8.16% 
Aviation Weather 20.47% 

 

1.3 Phase 2 GOES-R Benefit Assessments 

This study is a follow on to our Phase 1 effort, which focused on hurricane products (Lubar et al. 2021). 
As it is not feasible to develop a comprehensive list of applications for which GOES-R products and data 
are used, we selected several that we expected to make the greatest socioeconomic contributions and/or 
had data available that could be used in our socioeconomic assessment. As outlined more in section 2.3, 
we elected to investigate these following benefit areas for the Phase 2 study. 

1. Extreme weather including: 
a. Wildfires 
b. Winter storms 
c. Flash floods 
d. Severe thunderstorms and tornadoes 
e. Drought 

2. General public forecasts and warnings 
3. Air quality 
4. Aviation weather  
5. Unique Payload Services (UPS) 

a. Search and rescue (SARSAT) 
b. Data Collection System (DCS) 

i. Riverine flooding 
ii. NOAA’s Physical Oceanographic Real-Time System (PORTS®) 

6. Climate policy  
7. Benchmarking 
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2. Benefit Estimation Methods for Phase 2 

2.1 Phase 1 Assessment Methods 

During the Phase 1 assessment, our team conducted extensive meetings and interviews and obtained input 
from GOES experts, weather forecasters, researchers, and existing literature to characterize the 
contribution of GOES-R to end-user products and services.  

We used input from Phase 1 to identify several potential benefit areas for this Phase 2 assessment. We 
selected additional areas where the GOES-R series contributes to specific impactful meteorological events 
or supports a particular industry or segment of the economy.  

2.2 Assessment Approach 

Our team’s overall assessment approach is depicted in Figure 7:  

1. (Far-left column) We derived candidate benefit areas mostly from NOAA’s MSAs  (see section 
1.2) and selected the ones for assessment as described in section 2.1.  

2. (Second column from left) For each selected area, we examined the available literature to 
determine what, if any, socioeconomic impacts data exist (e.g., number of events, 
deaths/mortality numbers and costs, flight delays, and damage costs). 

3. (Center column) Next, we assigned a percentage of what portion of the impacts could/would be 
reduced with weather information (mostly heuristic determinations but a few derived from actual 
data).  

4. (Second column from right) We then applied a percent of weather information that was 
attributable to GOES-R data, which we obtained from TPIO analyses of the NOSIA II data. 

5. Based on these calculations, for each benefit area, we derived a baseline annual benefit estimate 
that we adjusted to 2020$ to maintain consistency across benefit areas and derive benefits in 
constant (real) dollars.  

6. (Far-right column) Finally, we calculated a total GOES-R benefit present value for each selected 
area by aggregating the data [from steps (2) through (5) above] over the expected lifetime of the 
GOES-R series and taking into account a number of socioeconomic factors (e.g., affected 
population numbers and growth, discount rates, growth of weather variability, income growth, 
and inflation adjustments). See section 2.3 for a more detailed explanation of these factors. 

At the end of each benefit analysis, we identified constraints in our work and recommendations for future, 
more comprehensive efforts. 
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Figure 7.  Processes for GOES-R benefit estimation (source: Aerospace). 
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2.3 Assessment Benefit Areas 

The primary assessment benefit areas were selected because of indications that these areas likely had 
significant use for GOES-R data and derived products and services. Our team derived this input during 
discussions, webinars, and interviews during Phase 1 as well as through reviewing the extant literature on 
GOES-R products and services. Undertaking any specific analysis was then dependent on the availability 
of economic data or prior studies in those areas. Recognizing that other GOES-R contribution areas may 
not be included in our Phase 2 topics, such as space weather, selections are based upon the availability of 
data and adequate resources from our team. It was also felt that GOES-R observations that have a broader 
applicability, likelihood of occurrence, and impact to larger populations or multiple economic areas have 
the potential to drive most of the socioeconomic contributions and thus we have not included some highly 
specific products and services at this time. 

For purposes of “framing” the benefit areas, we refer to the “Weather Information Value Chain” concept 
as discussed in our Phase 1 report, section 3.1, and copied here as Figure 8 [Lazo 2018b; Lubar et al. 
2021 p.15]. 

  
Figure 8.  Weather Information Value Chain. 

As discussed in our Phase 1 report, building on prior value chain work [Lazo and Mills 2021] and the 
NOAA Fleet Study [Abt et al. 2018] framework, we developed a customized GOES-R value chain for 
hurricane products and services as shown in Figure 9. We have not developed value chain models for 
each of the benefit areas discussed in Phase 2 but feel it would be worthwhile to do so as additional effort 
is applied to refine and better validate analysis in these areas.  
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Figure 9.  GOES-R hurricane information value chain model (source: Aerospace). 

In these value chain models, observations, data, information, products, and services generally flow from 
the left to the right (Figure 8) or top to the bottom (Figure 9). We recognize that there are, or at least 
should be, feedback loops from users to early steps in the process to help inform decisionmaking and thus 
enhance information value. In the following explanation of our organization of the benefit areas, we refer 
to where in the value chains the focal point is for that benefit area. Regardless of where this focal point is, 
we note that GOES-R’s input is at the beginning of the chain and the realization of the benefits is at the 
very endpoint of the chain. Uncertainties in our analyses generally lay in identifying the flow of 
information through the chain and contributions or attribution of value at each step. Better identification 
and refinement of parameter estimates at these points would improve the reliability and validity of this 
analyses as discussed in the last section of this report and individually within each benefit area.  

Our organization of the analysis fell into several general benefit categories, including: 

1. Extreme weather: These topics are generally specific weather events or phenomenon. In terms of 
the value chain concept, these would fall on the far-left side of the value chain (Figure 8). We 
start with an overview of the extreme weather area based on data from NOAA and the “Billion-
Dollar Weather and Climate Disasters” [NCEI-NOAA, 2022] framework. This general benefit 
category includes: 
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a. Wildfires 

b. Winter storms 

c. Flash flood and riverine flood warnings 

d. Severe thunderstorms and tornadoes 

e. Drought 

2. General public forecasts and warnings: While information in this area may be considered benign, 
routine, non-severe, everyday, or garden-variety, it can also include information supporting the 
forecast of extreme weather events. This is also more of an end-point benefit area rather than 
being a specific weather phenomenon. Finally, this benefit area encompasses the entire United 
States (U.S.) population, whereas the extreme-weather-affected populations tend to be smaller 
sub-populations that are vulnerable to those weather events. In terms of the value chain concept, 
the general public falls on the far-right side of the value chain as the ultimate end-user group. 

3. Air quality:  As a somewhat unique but obvious benefit area, air quality is not a specific NWS 
MSA. The NWS does, though, produce and issue many GOES-R data-fed operational air-quality-
related forecast guidance products such as:  

a. 1-hour and 8-hour average ozone concentration  

b. Daily 1-hour and 8-hour ozone concentration 

c. 1-hour average surface smoke concentration  

d. 1-hour average vertical smoke integration  

e. 1-hour averaged surface dust concentration 

f. 1-hour averaged column-integrated dust concentration 

These products become part of the National Digital Guidance Database (NDGD).3 More 
importantly, they contribute to the air quality products of other agencies (primarily the 
Environmental Protection Agency [EPA]).  

4. Aviation weather: In terms of the value chain concept, aviation weather could fall in the middle 
as a set of weather phenomenon that then can impact a variety of end-user groups. We note that 
there are likely several other mid-points that we have not evaluated, such as energy, recreation, or 
other transportation modes.  

5. UPS – “The GOES-R Series Unique Payload Services (UPS) consists of transponder payloads 
providing communications relay services in addition to the primary GOES mission data. 
Although other resources may exist for satellite communication, the specialized nature of 

 
3 The NDGD is a companion to the National Digital Forecast Database (NDFD) and provides access to computer-generated 
forecasts that are used by the NWS to create the official forecasts published in the NDFD. The Real-Time Mesoscale Analysis 
(RTMA) supports NDFD operations and provides analyses to NWS field forecasters. Many NDGD products are experimental, 
and none of them are official NWS forecasts. (https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-
guidance-database) 

https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database
https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database
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coverage at specific parts of the radio spectrum, and the importance of data latency drive the need 
for the UPS capability on the GOES-R spacecraft. The UPS suite consists of the Data Collection 
System (DCS), the High-Rate information Transmission/Emergency Managers Weather 
Information Network (HRIT/EMWIN), GOES Re-Broadcast (GRB), and the Search and Rescue 
Satellite-Aided Tracking (SARSAT) system.” [GOES-R Program Office, 2022] In this analysis, 
we include assessment of a very small portion of UPS products and services related to: 

a. SARSAT 

b. DCS 

i. Riverine flooding 

ii. NOAA’s PORTS4 

6. Climate policy: Climate is one of the four primary MSAs identified by TPIO [NOAA Technical 
Report, 2016]. We undertook a demonstration of an order-of-magnitude benefit assessment in 
terms of how GOES-R information supports policy analysis in climate decisionmaking to reduce 
long-term reductions in Gross Domestic Product (GDP).  

7. Benchmarking: Benchmarking, as applied here, is based on a method developed by World Bank 
[WMO, et al, 2015] for assessing total national value of investment in hydro-met services. It is 
not an additional benefit area but a top-down calculation that could be compared to the order-of-
magnitude results in the benefit areas. Similar to the climate policy benefit area assessment, we 
undertook a demonstration of an order-of-magnitude benefit assessment in terms of how GOES-R 
information could lower negative impacts or enhance positive impacts on the U.S. GDP. 

2.4 Baseline Parameters for Benefit Analyses and Aggregation 

We applied several parameters in multiple benefit areas and discuss them here. To the extent possible, we 
attempted to maintain consistency across benefit areas by using the same parameter estimates where 
relevant. We included these parameters in our “Control Parameters” sheet of the analysis spreadsheet and 
subsequently linked them to the individual benefit areas. In this manner, any given “general” parameter 
can be changed as desired and the subsequent change in benefit estimates were flowed through to all areas 
consistently. Where applicable, we used the following information: 

• Population: We obtained population projections for the United States from the U.S. Census 
International Database “Population estimates and projections for 227 countries and areas” for the 
years 2017 through 2040 [Census Bureau 2022]. From these data, we derived a simple average of 
the annual growth rates in U.S. population of 0.5725% to apply to future populations. Assuming 
increasing population is commensurate with increases in benefits from GOES-R applications, we 
increased the benefits each year in the analysis by this percent. We also used the 2018 population 
as the baseline for the United States when this is used in the benefit area analysis (e.g., in the 
public forecast benefits analysis). Appendix A shows the projected population estimates and 
growth rates and average of these growth rates. 

• Increase in weather variability: To account for future changes in weather variability, we factored 
in an increasing impact of 1.5% per year. We applied this factor to the benefit estimates across 
the analysis period, but it is meant to reflect the fact that the impacts of weather variability will 

 
4 PORTS® is a registered trademark of NOAA’s National Ocean Service. 
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likely increase in all benefit areas. The 1.5% factor is a subjective evaluation based on 
information from a range of sources including [EPA 2021], [Neumann, 2020], and [Sarofim, 
2021]. Future ongoing analysis should confirm or refine this factor. 

• Increase in wealth and income: Similar to increasing population, an increase in wealth (or 
income) would be associated with an increase in the benefits. We implicitly apply a “unit income 
elasticity”5 of benefits by assuming that benefits increase at the same rate as income. As noted in 
our Phase 1 report: “To estimate average annual increase in income over time, we use historical 
data from the Bureau of Economic Analysis (BEA) interactive data tables. We accessed Table 
SAGDP10N for ‘Per capita real GDP by state (Percent change from preceding period)’ for the 
years 1997 through 2019 (22 years) and a simple average indicates 1.469% of annual real 
increased in per capita GDP” [Lubar et al. p.50]. 

• Value of Statistical Life (VSL): The VSL is the economic measure applied to the reduction in 
potential fatalities related to information provided by GOES-R. VSL is not a measure of the 
economic value of any one individual but rather a measure of the socioeconomic benefit of 
reducing the risk of loss of life in a population. It is an ex ante measure of the benefit of risk 
reduction. As stated in the U.S. Department of Transportation (USDOT) guidance document on 
the use of VSL in policy analysis, “The benefit of preventing a fatality is measured by what is 
conventionally called the Value of a Statistical Life, defined as the additional cost that individuals 
would be willing to bear for improvements in safety (that is, reductions in risks) that, in the 
aggregate, reduce the expected number of fatalities by one” [USDOT 2021, p.1]. For the current 
analysis we used the VSL value recommended by the USDOT for the year 2020 of $11.6M 
[USDOT VSL 2022]. 6 

Consumer Price Index (CPI): We adjusted benefit estimates to 2020$ as applicable using the CPI. We 
used the CPI for All Urban Consumers (CPI-U) 7 using the U.S. city average across all items for the years 
1913 to 2021 with the base period of 1982 to 1984 = 100. We used this measure primarily to adjust 
benefit estimates from prior years into 2020$. For instance, to update the benefit estimates in the wildfire 
benefit area from 2016$ to 2020$, we used the ratio of the 2016 CPI to 2020 CPI as shown in Table 3. 
We recognize that, for specific sector groups, there may be more directly relevant price indexes (e.g., for 
aviation or in the benchmarking exercise) but suspect that using these, any changes would be well within 
the broad margin of error of the overall analyses. Note that we undertook inflation adjustments from prior 
years to convert all estimates to 2020$. Then we undertook the analysis using real 2020$ dollars (i.e., not 
factoring in inflation).  

• Table 3 is based on the CPI values for 1913 to 2018 shown in Appendix B. 

  

 
5 This means we assume that a 1% increase in income induces a 1% (unit increase) increase in benefits however benefits are 
measured. 
6 For instance, suppose a city council was considering improvements in traffic safety in a town that would on average lead to one 
fewer traffic fatality per year. To evaluate this, the council conducts a study and finds that each of the 100,000 households in the 
city is willing to have their taxes increase by $100 a year to pay for this safety program. The households are not paying to save 
any particular person in advance but to reduce the risk, so the value of the annual reduction in risk for one life is 100,000 
households times $100 per household, or $10,000,000 per “statistical life.” 
7 Source: https://data.bls.gov/timeseries/CUUR0000SA0  Series Id: CUUR0000SA0; Series Title: All items in U.S. city average, 
all urban consumers, not seasonally adjusted 

https://data.bls.gov/timeseries/CUUR0000SA0
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Table 3.  Example of Inflation Adjustment to 2020$ 

Year CPI 
2016  240.01 
2020  258.81 
Ratio applied to benefit estimate to adjust to 2020$ 1.078 

 

• Discount rates: For the choice of discount rates for aggregating to present value, we used the 
same set of discount rates as we used in the Phase 1 report. We indicate these in Table 4. 

Table 4.  Discount Rates (Real Rates) 

Level Rate Reference 
Low/Undiscounted8 0.000% [OMB 2003, Circular A-4] 
Medium Low 0.300% [0MB 2019, Circular No. A-94] 
Baseline 1.185% Based on discount rate analysis from Phase 1 report 
Medium High 3.000% [OMB 2003, Circular A-4] 
High 7.000% [OMB 2003, Circular A-4] 

 

Our baseline discount rate of 1.185% is based on our analysis of average decadal real 30-year 
treasury rates over four decades as discussed in section 8.3, Notes on Choice of Discount Rate, of 
the Phase 1 report [Lubar et al. 2021]. We believe that at the time of analysis, the 1.185% 
represented an appropriate measure of long-term real rates of return on 30-year treasury bonds, 
and thus would be an up-to-date estimate of an applicable discount rate for benefit analysis. The 
other discount rates are presented as “reference rates” to show the impact of using different rates 
in our analysis and to provide the present value estimates for those discount rates should others 
need those for policy implementation. These “references” are indicated as various OMB circulars 
in which these rates are noted as of the time of the analysis.  

• Duration of GOES-R benefits: As noted in our Phase 1 report, based on guidance from the NOAA 
GOES-R program office, we assume capability for the GOES-R series starting in 2018 and 
continuing until 2040. This timeline is supported by the formal “fly-out” chart graphic from 
NOAA/NESDIS. “NOAA Geostationary Satellite Programs Continuity of Weather Observations” 
(January 2022) [NOAA/NESDIS Web Page 2022] that shows the GOES-R (GOES-16/GOES-
East) satellite became operational in late 2017 and will continue at least through 2032 and that 
other GOES-R series satellites will continue seamless operations at least through 2040. We used 
this “fly-out” chart to establish the duration period for this study. The benefit analysis thus 
aggregates over 23 years (2018 to 2040 inclusive). Table 5 summarizes the parameters and 
factors used in the benefit analysis. Where applicable, these are used consistently in each 
analysis.  

 

 
8 Our “Low” discount rate is officially referred to as “Undiscounted” in OMB Circular A-4, but for the remainder of this report, 
we will refer to it as the “Low” discount rate. 
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Table 5.  Methods and Analysis Summary 

Discount Rates (DRs) 
(Real Rates) 

Rate Source 

Zero 0.000% “Undiscounted,” [OMB 2003, Circular A-4] 
Low 0.300% [OMB 2019, Circular A-94] 
Baseline 1.185% Analysis from Phase 1 report [Lubar et al. 2021] 
Medium High 3.000% [OMB 2003, Circular A-4] 
High 7.000% [OMB 2003, Circular A-4] 
Analysis Factors  n/a n/a 
VSL $11,600,000 Recommended VSL from USDOT (2020$) [USDOT VSL 2022] 
Growth in weather variability 1.500% Subjective summary multiple websites, peer-reviewed articles on projected socioeconomic 

impacts of climate change to derive estimate of growth of impacts over next 30 years 

Population growth 0.572%9 U.S. Census-projected population growth 2018-2040 -  average annual projected growth rates 
Income growth per capita 1.469% Historical Bureau of Economic Analysis interactive data tables. Table SAGDP10N simple average 

of 1.469% of annual real increase in per capita GDP. 

CPI See 
appendices 

Historical CPI for urban areas to adjust all studies from year of analysis to 2020$ constant 
dollars—U.S. Bureau of Labor Statistics 

Duration of benefits 2018 to 
2040 

Guidance from the NOAA GOES-R program office—graphic [NOAA GEO Flyout 2021] 

 
 

 
9 The exact number calculated from the census data is 0.572487826086957%, which is the percent applied in the benefit analysis spreadsheet but referred to throughout this report 
as 0.572%. Again, as noted above, the number of significant digits is much fewer than that indicated. 
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3. Extreme Weather: Overview 

3.1 Overview 

This section provides an overview and introduction to several benefit areas related to extreme weather 
and related NWS MSAs, including: 

• Wildfires 
• Air quality 
• Winter storms 
• Flash flood and riverine flood warnings 
• Severe thunderstorms and tornadoes 
• Drought 

3.2 Impacts of Extreme Weather  

Table 6 shows the CPI-adjusted United States billion-dollar disaster events over 41 years as tracked by 
NOAA’s National Centers for Environmental Information [NCEI 2022]. This shows only those events 
exceeding NCEI criteria for a billion-dollar disaster and thus does not account for smaller events, which 
may in aggregate constitute significantly higher total socioeconomic impacts.  

Table 6.  Billion-Dollar Events to Affect the United States from 1980 to 2021 (CPI-Adjusted) [NCEI 2022] 

Disaster 
Type 

Events Events/ 
Year 

Precent 
Frequency 

Total 
Costs 

Percent 
of Total 
Costs 

Cost/ 
Event 

Cost/ 
Year 

Deaths Deaths/ 
Year 

Drought 29 0.7 9.0% $291.1B 13.2% $10.0B $6.9B 4,139† 99† 
Flooding†† 36 0.9 11.1% $168.4B 7.7% $4.7B $4.0B 634 15 
Severe Storm 152 3.6 47.1% $344.8B 15.7% $2.3B $8.2B 1,972 47 
Tropical 
Cyclone 

57 1.4 17.6% $1,157.1B 52.6% $20.3B $27.6B 6,708 160 

Wildfire 20 0.5 6.2% $123.6B 5.6% $6.2B $2.9B 418 10 
Winter Storm 20 0.5 6.2% $81.0B 3.7% $4.1B $1.9B 1,314 31 
Freeze 9 0.2 2.8% $33.7B 1.5% $3.7B $0.8B 162 4 
All Disasters 323 7.7 100.0% $2,199.7B 100.0% $6.8B $52.4B 15,347 365 

Source: https://www.ncei.noaa.gov/access/monitoring/billions/summary-stats Accessed April 12, 2022.  
†Note from NCEI: Deaths associated with drought are the result of heat waves, and not all droughts are accompanied by extreme 
heat waves. 
††Flooding events (river basin or urban flooding from excessive rainfall) are separate from inland flood damage caused by tropical 
cyclone events. 

We show a time series of events from 1980 to 2021 in Figure 10 (accessed January 10, 2022). There is a 
gradual upward trend in this time series. The growth of extreme weather events, as evidenced by NCEI’s 
billion-dollar disaster statistics, indicates that GOES-R benefits in specific areas, some covered by other 
chapters in this report, will continue to increase. We attempt to capture these trends in our analysis by 
including the “increase in weather variability” factor of 1.5% per year to account for future changes in 
weather variability. The 95% confidence interval (CI) represents the uncertainty associated with the 

https://www.ncei.noaa.gov/access/monitoring/billions/summary-stats


18 

disaster cost estimates. Monte Carlo simulations were used to produce upper and lower bounds at these 
confidence levels [Smith and Matthews 2015].10 

 
Figure 10.  Time-series graph of U.S. billion-dollar disaster events (1980–2021) [NCEI 2022A]. 

 

 

 
10 Data from https://www.ncdc.noaa.gov/billions/summary-stats/US/1990-2021. Technical paper: A. B. Smith, J. L. Matthews, 
“Quantifying Uncertainty and Variable Sensitivity within the U.S. Billion-dollar Weather and Climate Disaster Cost Estimates,” 
Natural Hazards, 77 (2015), pgs., 1829-1851 See https://www.ncdc.noaa.gov/monitoring-content/billions/docs/smith-and-
matthews-2015.pdf 
 

https://www.ncdc.noaa.gov/billions/summary-stats/US/1990-2021
https://www.ncdc.noaa.gov/monitoring-content/billions/docs/smith-and-matthews-2015.pdf
https://www.ncdc.noaa.gov/monitoring-content/billions/docs/smith-and-matthews-2015.pdf
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4. Wildfires 

4.1 Summary 

To estimate benefits of GOES-R related to impacts of wildfires, we calculated reductions in 
socioeconomic impacts from fires due to potential early satellite detection. Building on existing 
information resources, we implemented the following steps to derive an annual benefit estimate:  

• Obtained upper- and lower-bound estimates of total economic impacts of wildfires from Thomas 
et al. paper ($71M–$348M/year) and adjusted to 2020$ 

• Obtained the average total number of wildfires per year from Congressional Research Service 
(CRS) 2021 (62,805 fires/year) 

• Divided impact estimates by number of wildfires to get average cost per fire ($1.2M–$6.0M/yr) 

• Assumed 1% of fires are or could be avoided because of weather observation, modeling, and 
forecasting early detection. (Note we feel this is a key unknown parameter) 

• Applied 14.02% factor as weather information attributable to GOES-R (TPIO number) 

• Derived annual benefit estimates (upper and lower bound in 2016$) of early detection of wildfires 
using GOES-R information 

This provided us with a baseline year annual benefit from GOES-R. We then aggregated these over the 
lifetime of the GOES-R series, accounting for increases in wealth, population, and weather variability 
(using a baseline discount rate of 1.185%), and took the average of the upper- and lower-bound estimates. 
Our baseline estimate is an aggregated present value benefit of $9.68B (in 2020$).  

4.2 Introduction to Application Area 

GOES-R fire detection and characterization-related data make Advanced Baseline Imager (ABI) products 
extremely useful to determine the detection of fire pixels in imagery and to monitor the growth or rapid 
changes of fires. As discussed here, wildfire-related GOES-R information covers a range of products and 
services at distinct phases of a wildfire. In our analysis, we focus only on the benefits of early detection 
and thus do not attempt to assess potential benefits for many other phases of wildfire information.  

ABI allows heat signature detection with significantly improved time and spatial resolution over GOES-
N, -O, -P. ABI can now also detect smaller fires. Features derivable from the GOES-R ABI are: 

• Fire size 
• Fire temperature 
• Radiative power 

The differential response between the 4-micron and the 11-micron channels is the basis for the Fire 
Detection and Characterization (FDC) product from GOES-R. One can also combine RGB visualizations 
with Geo Color enhancements to show hotspots and smoke side by side on the same product. 

GOES-R also monitors smoke from wildfires by providing smoke-plume tracking in near realtime. GOES 
products can guide firefighting aircraft and helicopters to avoid areas of poor visibility. The movement of 
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smoke can also affect visibility and airport operations. Additionally, GOES-R can monitor burn scarring 
in areas previously subjected to wildfires and denuded of vegetation so that flash flooding may be 
predicted from rain events. 

Also related is biomass burning from “controlled” fires (e.g., forest dry-debris clearing and intentional 
agricultural burning), which is one of the largest “known-unknown” sources of potentially harmful U.S. 
airborne emissions.11 Primary fire and smoke applications of GOES-R data include: 

• Hotspot thermal detection 
• Multi-spectral composites 
• Hotspot identification and characterization (fire detection and characterization from ABI) 
• Smoke and aerosol characterization 
• Daytime smoke 

Geostationary satellites provide more frequent coverage than non-geostationary satellite systems 
(NGSOs)12 but provide only limited coverage of polar regions due to the large viewing angles at those 
higher latitudes. Therefore, wildfire detection performance may vary with higher latitudes. 

GOES-R data contributes to the beneficial warnings of fires, based on the operational Fire Detection and 
Characterization product. High-intensity wildfires, often exacerbated by high winds, can create 
“megafires,” which can be extremely hazardous13 in the Plains regions of New Mexico, Texas, 
Oklahoma, and Kansas. 

Wildfires also threaten lives and properties that are situated in areas where they can be impacted directly 
by wildfires. When temperature, drought, and wind conditions are optimal, wildfires can threaten lives, 
homes, and structures. Fire suppression costs, such as those from tanker-equipped airplanes and 
helicopters, can consume significant amounts of local, state, and federal agency budgets. 

Economic impacts … reach beyond the primary indicators of suppression costs and homes or 
structures loss. … Among other negative economic effects for communities, wildfires can burn 
timber, make recreation and tourism unappealing, and affect agricultural production. Local 
communities often become concerned about the effects of smoke on health and safety, as well. … 
Depending on the severity and location of a wildfire, post-disaster recovery can come with a 
considerable price tag. Factors that affect state and local budgets in the long-term include: 

• replacement of lost facilities and associated infrastructure 
• watershed and water quality mitigation 
• sensitive species and habitat restoration [Diaz 2012]14 

 
11 While we have not directly tied air quality impacts to wildfire, we do consider the benefits of improved air quality information 
based on GOES-R data in a following discussion.  
12 “Non-GSO satellites at medium Earth orbits (MEO) altitudes are between 8 000 and 20 000 kilometres above the Earth and 
low Earth orbits (LEO) altitudes are between 400 to 2 000 kilometres above the Earth. Since non-GSO satellites move across the 
sky during their orbit around the Earth, non-GSO operators must deploy a fleet of satellites, generally called “constellations", to 
provide continuous service from these altitudes.” https://www.itu.int/en/mediacentre/backgrounders/Pages/Non-geostationary-
satellite-systems.aspx Accessed April 12, 2022. Sensors on LEO satellites can detect smaller fires, but they only overfly the 
continental United States a few times during daytime or nighttime. A geostationary (GEO) satellite would not detect smaller fires 
but would offer near continuous visibility of a given point. 
13 For a good account of the dangers of wildfires on the plains, see Hollandsworth, Skip, 2017, ”The Day the Fire Came,” Texas 
Monthly, July 2017, located at https://features.texasmonthly.com/editorial/the-day-the-fire-came/ 
14 Diaz, J.M., 2021.  Economic Impacts of Wildfire. Southern Fire Exchange, SFE Fact Sheet 2012-7 located at 
https://fireadaptednetwork.org/wp-content/uploads/2014/03/economic_costs_of_wildfires.pdf 

https://www.itu.int/en/mediacentre/backgrounders/Pages/Non-geostationary-satellite-systems.aspx
https://www.itu.int/en/mediacentre/backgrounders/Pages/Non-geostationary-satellite-systems.aspx
https://features.texasmonthly.com/editorial/the-day-the-fire-came/
https://fireadaptednetwork.org/wp-content/uploads/2014/03/economic_costs_of_wildfires.pdf
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Figure 11 is an example of fire devastation to a local community. The arrow in Figure 11 indicates the 
former residence of Dr. Jeffrey Lazo, a co-author of this report.15  

 
Figure 11.  Burned-out neighborhood after the December 2021 Marshall Colorado Fire (source: J. Lazo). 

4.2.1 GOES Fire Detection 

GOES-R products that can flag the existence of a fire hotspot (sometimes well in advance of other 
techniques) to first responders and allow fire suppression efforts to begin sooner, help to reduce the 
economic impacts from that fire. Other GOES-R products can help identify smoke resulting from 
wildfires and support air quality determinations. The 1-minute scan from the GOES-R ABI mesoscale 
scans can rapidly identify the heat signature of early-phase wildfires under certain conditions. 

Prior to the launch of GOES-16, experiments that simulated the capabilities of GOES-R using super rapid 
scan techniques with GOES-14 demonstrated that initial detection, coupled with Short Message Service 
(SMS) message text notices to Oklahoma emergency managers, often indicated a fire before it had been 
called into 911. Using appropriate wavelength detection, it allowed for rapid detection of hotspots. 
Participants during wildfire notifications in February 2016 indicated that “the dissemination of this 
information enhanced situational awareness and permitted contact with a few [fire] departments in 
advance of 911 calls...It was additionally noted that ‘fire location often plays a role in resource allocation 

 
15 Photo credit: screen capture by Dr. Lazo from an indeterminate website such as 
https://www.youtube.com/watch?v=WK63zjsBl7Q.  

https://www.youtube.com/watch?v=WK63zjsBl7Q
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priority’ and the text messages enabled a timely dispatch of resources and aided in prioritization of fires 
with structures and improvements at risk” [Lindley et al. 2016].  

GOES-R provides 5-minute observations over the conterminous U.S. and 10-minute observations over 
the entire Western Hemisphere. The automated Active Fire Product algorithm uses an approach primarily 
driven by data from GOES-R ABI mid-wave infrared (MIR) and long-wave infrared (LWIR) channels 
building on the legacy Wildfire Automated Biomass Burning Algorithm (WF-ABBA) (see the original 
concept [Prins and Menzel 1992]). The higher saturation temperature (+400 K) of the current MIR 
channel on the ABI makes it especially suited for active fire detection applications. The GOES-R fire 
product is named “Fire / Hot Spot Characterization (FDC).” FDC is, in fact, a suite of tools that can 
monitor large areas and routinely detect hundreds of fires at a time. FDC products are available every 5 
and 15 minutes. 

The NOAA/NESDIS Hazard Mapping System (HMS) is an analyst-integrated fire and smoke product 
used to analyze hotspots and smoke plumes for possible fire locations in near realtime. The NWS 
produces a blended product using output from automated fire detection algorithms that use both 
geostationary and polar-orbiting satellite data. The resulting display of fires and smoke plumes are 
generated daily for North and Central America. Users of these data include federal, state, and local 
agencies as well as private companies and universities.  

Similarly, EPA’s AirNow Fire and Smoke Map provides additional information on levels of particle 
pollution (particulate matter [PM2.5]) in the air during fires (see an example in Figure 12). 
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Figure 12.  EPA’s Air Now Fire and Smoke Map, September 21, 2021 [EPA 2021A] 

GOES-R improvements allowed HMS to include the higher-resolution 2 km shortwave fire channel, 
provide more frequent scans due to the improved R-series scan rates, and more accurate pixel geolocation 
than was possible from GOES-N, -O, -P. These yields improved estimates of spot sizes, temperatures, and 
trends. In addition, the Geostationary Lightning Mapper (GLM) takes continuous lightning 
measurements, enabling wildland fire managers to identify potential fire ignitions in fire-risk areas and 
decreasing response times to new fires. Image sequences can be made into satellite loop videos.  

Following a fire detection notification, the NRL’s Fire Locating and Modeling of Burning Emissions 
(FLAMBE) program is used to determine how large the detected fires are, estimate their temperature, and 
determine how much fuel is available—all in an effort to predict the amount of smoke that will result. 
FLAMBE uses satellite data from multiple types of satellites. 

“Lightning-initiated wildfires account for 56% of the total acreage burned in CONUS. Nearly half 
of lightning-induced fires are not observed until one or more days after the event. Lightning-
induced fires can smolder for some time before becoming a noticeable wildfire. Also, large fires 
can produce large plumes of heat and smoke that can generate lightning which triggers more fires. 
GLM can provide important information critical to the diagnosis of the intensity of updrafts and 
downdrafts. Safety of wildland firefighters is paramount and with GLM able to detect the full 
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extent of cloud-to-cloud lightning, this helps to better anticipate cloud to ground lightning strikes 
which could endanger fire-fighting personnel. GLM data are also useful in the forensics analysis 
after the fire. Fire investigations help to confirm whether lightning caused power outages, injuries 
in remote areas, or prove the existence of convection. Detection of continuing current is important 
and GLM can supplement data from ground-based lightning networks, which may be needed to 
trigger insurance company damage payments [Balch 2017]” 

4.3 Inputs from TPIO-Derived from NOSIA II Data 

The Fire Weather MSA, with products associated with the fire weather national service program, had a 
GOES-R contribution to models of 1.2% and a GOES-R contribution to non-model products of 12.82%. 
These resulted in a total GOES-R contribution to fire weather products of 14.02%. 

4.4 Benefit Assessment 

We focused on the potential avoided costs of early detection of wildfires. We obtained estimates on the 
average annual total socioeconomic impacts of wildfire from Thomas et al. 2017 [Thomas et al. 2017]. As 
noted in Thomas et al. [Ibid, p. i], “The economic burden represents the impact wildfire has on the U.S. 
economy. Tracking the economic burden of wildfire could be used to assess return-on-investment into 
wildfire interventions. The economic burden is decomposed into: 1. intervention costs; 2. prevention/ 
preparedness, mitigation, suppression, and crosscutting; 3. and into direct and indirect wildfire related 
(net) losses” [Ibid, p. i]. Thomas et al. [Ibid] provide lower- and upper-bound estimates of the total 
economic burden of wildfires (see Table 7) [Ibid, p. i].  We provide the estimates in 2016$ ranging from 
$71B to $347.8B. This was adjusted to 2020$ using the CPI. To derive an average impact per fire, we 
obtained information from Hoover and Hanson [Hoover and Hanson 2021, p.1] indicating that “From 
2011 to 2020, there were an average of 62,805 wildfires annually” [Ibid] We divided the total economic 
impact by the number of fires to derive lower- and upper-bound estimates of the average cost per fire 
ranging from $1.2M to $6.0M. Again, using the average number of fires per year, we assumed that 1% of 
these may be detected using weather observations and mitigated before incurring significant impacts. This 
would represent almost 630 fires per year detected and prevented using weather information. Of these, we 
attributed 14.02% (or 88.03 fires a year) to GOES-R observing capabilities based on TPIO data of the 
percent of wildfire forecasts and products attributable to GOES-R (see Table 7). 

We then multiplied this by the average costs per fire to derive lower- and upper-bound estimates of the 
benefit from GOES-R in reducing the potential impacts of wildfires. These baseline estimates range from 
$107,462,406 to $525,674,048 (in 2020$), as shown in Table 7. 
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Table 7.  Economic Impacts of Wildfires—Number of Fire, Inflation Adjustment, and Value of Fires Prevented 

Analysis Factors Lower Bound Upper Bound 
Total annual economic impacts of wildfire 
[Thomas et al. 2017] ($2016)) 

71,100,000,000 347,800,000,000 

   CPI  2016 (240.01) n/a n/a 
   CPI 2020 (258.81) 1.078 1.078 
 76,670,522,526 375,049,335,228 
Average number of wildfires (CRS. 2021) 62,805 62,805 
Average cost per fire (2020$) 1,220,771 5,971,648 
Number of fires 62,805 62,805 
Percent of fires prevented with weather information 1.00% 1.00% 
GOES-R % of weather info (TPIO Input) 14.02% 14.02% 
Number of fires prevented 88.03 88.03 
Value of fires prevented (2020$) 107,462,406 525,674,048 

 

As with other benefit areas, we assumed changes in weather variability would exacerbate wildfire impacts 
and factored this in as an annual increase in costs of 1.5%. We further assumed population growth would 
increase impacts by 0.572% annually and per capita income growth would compound the value of 
benefits by 1.469%. 

We derived lower- and upper-bound present value benefit estimates using the five applicable rates of 
discount and taking the average of the lower and upper bounds as shown in Table 8 in billions of 2020$. 
The baseline GOES-R present value contribution to early wildfire detection is $9.68B. 

Table 8.  Present Value Estimates of GOES-R Contribution to Early Wildfire Detection 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 10.96 10.62 9.68 8.11 5.82 

 

4.5 Discussion—Key Uncertainties and Recommended Future Efforts 

Characterizing the socioeconomic factors associated with an earlier identification (by satellite) of remote 
wildfires and the resultant changes in suppression, evacuation, or other response costs are difficult to 
gauge. Our approach assumed that a small percentage (e.g., 1%) of wildfires were “mitigated” due to 
early detection. Our assumption, on the percent of the average number of fires per year that may be 
detected and mitigated, could be further investigated and the value refined. This would then alter the 
number of fires per year detected and “prevented” or perhaps otherwise reduce or increase and affect the 
results accordingly. 

We also note that we have taken a simple average of the upper- and lower-bound estimates [Thomas et al. 
2017]. These bounds represent a range of uncertainty of plus or minus 33.9%. If one considered only the 
uncertainty in the Thomas et al. [Thomas et al. 2017] work, it would suggest our benefit estimates have 
that much uncertainty as well.   
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We note as well that we have not evaluated several other potential wildfire-related benefits from GOES-R 
such as decreased response time for active fires, improved decisionmaking for firefighting flight 
operations related to identifying smoke plumes, improved commercial airport operations, identification of 
burn scars for post-fire rehabilitation and flash flood prediction, and potential reductions in morbidity and 
mortality related to improved air quality warnings.  

In addition to benefits from GOES-R imagery, the contribution of the GLM should be specifically 
considered and evaluated. Forecaster use of GLM data is significant and growing monthly. The increase 
in jump rate detected by GLM in a severe weather event provides clues that may lead to detecting 
lightning-induced wildfires. The viewpoint of cloud-to-cloud lightning from the GOES-R position above 
the cloud tops brings new insights to the lightning phenomenon. 
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5. Winter Storms 

5.1 Summary Result 

To estimate benefits of GOES-R related to impacts of winter storms, we calculated the potential reduction 
in winter-storm-related damages and mortality due to weather information. Building on existing 
information resources, we implemented the following steps to derive an annual benefit estimate: 

• Damages: 

- The extant literature on winter weather impacts indicated annual average damages over 37 
years ($1.186B/yr) 

- Assumed 10% of impacts are or could be mitigated. (Note we feel this is a key uncertain 
parameter.) 

- Applied the factor of 11.19% as attributable to GOES-R (TPIO number) ($28.9M derived 
annual baseline benefit) 

• Fatalities: 

- Took average number of fatalities from NOAA Billion-Dollar Disaster Events database for 
winter and cold fatalities (34.0 lives) 

- Assumed 10% of fatalities could be or are mitigated (3.4 lives). (Note we feel this is a key 
uncertain parameter.) 

- Assumed that 11.19% of that is attributable to GOES-R (TPIO number) 

- Applied USDOT 2020 base year VSL ($11.6M) 

- Derived benefits in reduced winter weather fatalities ($4.4M) 

• Added these two together to give an approximate annual 2018 baseline benefit of $33.3M 
(2020$). 

We then aggregated these over the lifetime of the project, accounting for increases in wealth and 
population. For winter storms, we did not include a weather variability growth factor, assuming that there 
is even potentially a decrease in cold weather variability.16 The baseline estimate is an aggregated present 
value benefit of $0.84B (in 2020$). 

5.2 Introduction to Application Area 

The cryosphere includes snow, sea ice, lake and river ice, icebergs, glaciers, and ice caps, 
ice sheets, and ice shelves, permafrost and seasonally frozen ground, and solid 
precipitation. … Changes in the cryosphere have major impacts on water supply, 
agriculture, transportation, freshwater ecosystems, hydropower production, health, and 

 
16 We make a subjective assumption that winter severity will decrease with global warming. This is open to further analysis or 
support from the extant literature especially to the extent that to which the variability in winter weather may change.  
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recreation. - hazards include floods, droughts, avalanches, and sea-level rise” [Key at al. 
2020]. 

Winter weather causes delays to day-to-day air and land transportation commerce due to snow, ice, or 
winter storms and impacts maritime transportation on the Great Lakes, commercial aviation departure 
delays to deicing the aircraft prior to takeoff, and recreational access to mountain resorts. Coverage and 
movement of ice in aquatic regimes and ice thickness provides important information. 

Lake-effect snow can significantly impact weather downwind of the Great Lakes. A Cleveland WFO 
graphic, from GOES-16 imagery on January 7, 2022, is shown in Figure 13. 

 
Figure 13.  Lake-effect snow bands, derived from satellite imagery [NWS 2022A]. 

For most Americans, snow means difficult travel on roadways, potential isolation at home due to snow 
amount or drifting, and accompanying cold temperatures that, with the snow load on trees, team up with 
downed power lines to foster potential frozen water pipes in unheated homes. The advance planning made 
possible by an accurate forecast does allow for some mitigation of this problem. 

Most GOES-R Series contributions to winter weather products are derived from visible or IR imagery. 
Excellent examples of impacts may be found in two recent meteorological events. First, a major winter 
storm for the Northeast and coastal Mid-Atlantic states over the weekend of January 28 and 29, 2022, 
prompted winter storm watches for more than 45 million people all along the mid- and upper eastern 
seaboard (Figure 14, NWS public service graphic for January 28–30, 2022). 
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Figure 14.  NWS Weather Prediction Center blizzard public service message and graphic (NWS). 

Another major winter storm impacted a large swath of the nation on February 1–4, 2022, leading to 
winter storm watches and ice warnings from states ranging from New Mexico to Maine (Figure 15).  

 
Figure 15.  February 1–4, 2022, winter storm watches and ice warnings (NWS). 

GOES-R imagery contributed to products associated with both winter storms. Figure 16 shows GOES-16 
mid-level water vapor imagery (left panel) showing the precipitation that produced a mid-altitude 
cyclone, which rapidly intensified off the northeast U.S. coast on January 29, 2022. The right panel shows 
GOES-16 water vapor images January 29, 2022, with hourly plots of wind barbs and gusts showing the 
highest wind gusts occurred near the New England coast. 
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Figure 16.  GOES-16 water vapor images January 29, 2022. Source: CIMSS Satellite Blog (NOAA/CIMSS). 

Figure 17 shows large winter weather systems affecting much of central United States from New Mexico 
to New England on February 2, 2022 (NOAA satellites). GOES-R imagery has a key role in forecaster 
decisions and the development of warning and forecast products in advance of these storms. 

 
Figure 17.  Water vapor from GOES-16, February 2, 2022 (NOAA Satellites).   

5.3 Input from TPIO-Derived from NOSIA II Data 

The Winter Weather products had a GOES-R contribution to models of 1.01% and a GOES-R 
contribution to non-model products of 10.17%. This resulted in a total GOES-R contribution to winter 
weather products of 11.19%. 

5.4 Benefit Estimate 

To derive estimates of the benefit of GOES-R in reducing winter weather impacts, we examined both 
reductions in damages or economic impacts and reductions in fatalities associated with winter or cold 
weather. We obtained damage information from NOAA’s Billion-Dollar Weather and Climate Disasters 
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database for the years 1980 through 2021, using CPI-adjusted data. We combined data on winter storm 
and freeze impacts. We feel it is likely that annual impacts are significantly larger as most individual 
winter storm impacts do not reach the billion-dollar threshold, and the cumulative annual costs of small 
storms is likely much more than that of billion-dollar events. Similarly using these data, Lazo et al. [Lazo 
et al. 2020] and Hosterman et al. [Hosterman et al. 2019] studied two winter storms in the New York area 
in 2010 and 2016, comparing the impacts of each of the storms—one after the implementation of the 
NWS’s Impact-based Decision Support Services (IDSS) and one before. That study examined the 
Northeast Snowfall Impact Scale (NESIS) to characterize and rank the snowstorms as a function of “the 
area affected by the snowstorm, the amount of snow, and the number of people living in the path of the 
storm” [Ibid]. The study gathered data about the impacts of extreme winter storms, as it looked at 
emergency management, aviation, ground transportation, and energy areas. 

Lazo et al. [Lazo et al. 2020] examined the benefits of IDSS using case studies of winter storms 
impacting New York City. This work is also discussed in Hosterman et al. [Hosterman et al. 2019], 
focusing on the emergency management aspects of IDSS that are critical to value creation. In the 
literature reviewed for this work, Lazo et al. 2020 [Ibid] state: 

“Between 1980 and 2017, fourteen different “billion-dollar” winter storms inflicted a total of 
$43.9 billion in damages on the United States and caused 1,013 deaths, based on summary data 
from the National Oceanic and Atmospheric Administration’s (NOAA’s) Billion-Dollar Weather 
and Climate Disasters database (https://www.ncdc.noaa.gov/billions/summary-stats). Untold 
further damage, disruption, injury, and death likely can be attributed to the vast majority of winter 
storms that did not reach the billion-dollar impact level. During the same time period, the EM-
DAT database identifies 355 winter weather disasters accounting for over 19,000 fatalities 
globally. The EM-DAT database uses a specific classification to include events as disasters (see 
https://www.emdat.be/). We searched EM-DAT globally for “cold waves” and “severe winter 
conditions” [Ibid, p. E626]. )  

Table 9 shows our calculation of benefits attributable to GOES-R from NOAA’s Billion-Dollar Weather 
and Climate Disasters database [NCEI 2022], we used the annual average damage of $2.7B in 2021$. We 
assumed that 5% of these damages are already avoided by use of weather information and that 5% more 
could be avoided with improved use of weather information—thus assuming a total of 10% of the winter 
weather impact is or could be mitigated. (Note that this is a key unknown parameter in this analysis and 
subject to further research.) Of this, we attribute 11.19% to GOES-R based on data from TPIO. We then 
adjusted this estimate back to 2020$ from the 2021$ that the CPI-adjusted damages were reported in in 
the NOAA database. 

Table 9.  Calculation of Winter Storm Damages Reductions Attributable to GOES-R 

Analysis Factors Factor Value 
Average Annual Damages—NOAA (1980–2021 CPI Adjusted) [NCEI 
2022](B$)  n/a 2.7 
Assume 10% could be or are mitigated (B$) 10.0% 0.270 
Percent attributable to GOES-R (TPIO) (B$) 11.19% 0.030 
Benefits attributable to GOES-R ($)  n/a 30,206,464 
CPI adjustment  n/a n/a 

2021 270.97  n/a 
2020 258.71  n/a 

CPI factor and adjusted value (2020$) 0.96 28,851,035 

https://www.ncdc.noaa.gov/billions/summary-stats
https://www.emdat.be/
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Using 79 years of data, we regressed fatalities each year to see that winter-weather-related fatalities have 
been falling significantly for a prolonged period, although it has been highly variable. Using only the 
winter weather data, we employed the regression to project fatalities to 2040 as well.17 See Figure 18 for a 
plot of these regression data. Note that this analysis was used to support our assumptions but not 
specifically to model reduced fatalities for the benefits assessment. That calculation is described next. 

 
Figure 18.  Historical and projected (fitted) winter weather fatalities (not including freeze data) (Lazo/Aerospace). 

To maintain consistency with the damage estimation, we took the average number of fatalities per year 
from winter storms and freeze as reported in NOAA’s Billion-Dollar Weather and Climate Disasters 
database for the years 1980 through 2021 [NCEI 2022]. This average of 34 deaths per year likely 
significantly understates the total due to cold weather as most events do not reach the billion-dollar 
threshold. For instance, according to an EPA document, “Between 1979 and 2016, the death rate as a 
direct result of exposure to cold (underlying cause of death) generally ranged from 1 to 2.5 deaths per 
million people, with year-to-year fluctuations. Overall, a total of more than 19,000 Americans died from 
cold-related causes since 1979, according to death certificates” [EPA 2022]. This translates to over 500 
cold-related fatalities a year rather than the 34 derived from the NOAA Billion-Dollar Weather and 
Climate Disasters database. 

As in the damage analysis, we assume that 5% of fatalities are already avoided by use of weather 
information and that 5% more could be avoided with use of weather information—thus assuming 10% of 
the winter weather fatalities impact is or could be mitigated. Of this we attributed 11.19% to GOES-R 
based on data from TPIO’s NOSIA II analysis. As shown in Table 10, this represents a reduction in 0.38 
annual fatalities. We then applied the VSL estimate of $11.6M per statistical life, which are already in 
2020$. The baseline estimate of the GOES-R attributable benefits associated with reductions in winter 
weather fatalities is $4.4M annually as shown in Table 10.  

 
17 This is a simple linear model that obviously cannot hold indefinitely as it would eventually project negative fatalities. 
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Table 10.  Calculation of Winter Storm Fatality Reductions Attributable to GOES-R 

Analysis Factors Factor Value 
NOAA Billion-Dollar Disaster - Winter Storm and Freeze Average Annual 
Fatalities [NCEI 2022] 

34.00 n/a 

Assume 10% could be or is mitigated 3.4 n/a 
11.19% of forecasts information attributable to GOES-R (TPIO) 0.38 n/a 
VSL - USDOT 2020 base year VSL n/a $11,600,000 
GOES-R annual reduced fatality benefits (2020$) n/a $4,412,381.28 
 

We then summed damage benefits and reduced fatalities benefits for total winter storms benefits. 
Differently from other benefit areas, we did not assume changes in weather variability would exacerbate 
winter weather and cold weather impacts as there is some indication this has decreased recently and may 
continue to decrease over time. In econometric analysis of winter weather impacts on U.S. economic 
activity, Bloesch and Gourio [Bloesch and Gourio 2015] looked for a statistical signal related to 
increasing temperatures due to climate change. Noting that annual variations likely overshadowed the 
climate trend, they did find that “… in some cases it is possible to observe a positive trend starting in 
1980, which is consistent with the evidence on climate change on the United States” [Ibid]. 

We continued to assume population growth would increase impacts by 0.572% annually and per capita 
income growth would compound the value of benefits by 1.469%. We derived present value benefit 
estimates using the five applicable rates of discount as our baseline estimates, as shown in Table 11 in 
billions of 2020$. The baseline contribution by GOES-R to winter storm forecasting is $0.84B in 2020$. 

Table 11.  Present Value Estimates of GOES-R Contribution to Winter Storm Forecasting 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 0.96 0.93 0.84 0.69 0.48 

 

5.5 Discussion—Key Uncertainties and Recommended Future Efforts 

With respect to economic impacts, the current analysis only looks at “damages” as defined in the NOAA 
Billion-Dollar Weather and Climate Disasters database [NCEI 2022]. It seems likely that cumulative daily 
economic impacts are significantly larger than the billion-dollar threshold. For instance, in detailed 
econometric analysis of economic data, Bloesch and Gourio [Bloesch and Gourio 2015] results indicate 
“…overall support the view that weather has a significant, but short-lived, effect on economic activity. 
Except for a few industries, which are affected importantly (such as utilities, construction, hospitality, 
and, to a lesser extent, retail), the effect is not very large…” [Ibid, pp.17-18]. This suggests that there are 
significant sub-billion-dollar impacts on a broad range of economic activity related to winter weather that 
do or may see benefits from improved weather information. 

The key uncertainties in this analysis are the factors for the percent of damages or fatalities prevented by 
using weather information. We applied 10% factors for the current analysis but suggest further research to 
refine this value. We note that the NOAA Billion-Dollar Weather and Climate Disasters database does 
also present confidence intervals on the damage costs and that information could be used to consider 
confidence intervals on the current analysis. For instance, the 95% upper and lower bound 1980–2017 
CPI-adjusted winter storm cost confidence interval is $40.9B to $60.1B [EPA 2022]. This suggests a 
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roughly 20% plus-or-minus probability interval on the current estimates just from the NOAA damage 
data. The uncertainty in the percent of impacts avoided is likely equal to or greater than this and, for this 
reason, we have not calculated a confidence interval at this time.  

These assumptions, along with the following EPA perspective, suggest we are being very conservative in 
assessing the number of cold/winter fatalities.  

“While increases in deaths are generally associated with colder temperatures, some winter deaths 
are due to factors other than exposure to cold conditions. For example, winter is typically flu 
season. In other cases, even if cold exposure contributes to a death, it may not be reported as 
‘cold-related’ on a death certificate. These limitations, as well as year-to-year variability in the 
data and a change in classification codes in the late 1990s, make it difficult to determine whether 
the United States has experienced a meaningful increase or decrease in deaths classified as ‘cold-
related’ over time” [EPA 2022].18  

We note further that many winter storm fatalities are likely related to vehicle crashes, which also would 
not be counted in the billion-dollar disaster date. As indicated by the USDOT:  

“The U.S. Department of Transportation (DOT) said more than 5.8 million vehicle crashes occur 
each year based on statistics from 2007 to 2016. About 21 percent of those, or just over 1.2 
million, involved hazardous weather. Those U.S. weather-related automobile crashes have killed 
an average of 5,376 people annually, accounting for about 16 percent of all vehicular deaths, the 
DOT said. More than 418,000 others were injured each year during that same period” [The 
Weather Channel 2022]. 

It is possible that benefits associated with reductions in winter storm impacts derived here overlap to 
some degree with the value calculated in the aviation benefits area. Calculating such overlaps is beyond 
the resources of the current study and is one more reason all the socioeconomic results of this study 
cannot simply be summed to arrive at a total socioeconomic value for the GOES-R system. 

 

 
18 https://www.epa.gov/climate-indicators/climate-change-indicators-cold-related-deaths. Accessed April 26, 2022 

https://www.epa.gov/climate-indicators/climate-change-indicators-cold-related-deaths
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6. Flash Flood Warnings—Fatalities  

6.1 Summary Results 

To estimate benefits of GOES-R related to impacts of flash floods, we calculated the reduction in flash 
flood fatalities. Note that section 7 examines potential reductions in property damage. Building on 
existing information resources, we implemented the following steps to derive an annual benefit estimate:  

• Fatalities: 

- We obtained annual flood related fatality data from NOAA: 

 Took 30-year average from NOAA flood fatalities 1959–1988 (138.4) 

 Took 30-year average from NOAA flood fatalities 1989–2018 (86.7) 

 Took difference in these averages as reduction in fatalities (51.8) 

• We assumed 30% of this reduction is attributable to weather information (15.53 lives saved). 
(Note we feel this is a key uncertain parameter.)  

• We then applied a 10.24% factor as contribution of GOES-R (1.59 lives saved) (TPIO number), 

• We applied $11.6M VSL to calculate annual benefits in reduced fatalities ($18.4m/yr baseline). 

This derivation provided us with baseline year annual benefits from GOES-R of $18.4m/year. We then 
aggregated these over the lifetime of the GOES-R series, accounting for increases in wealth, population, 
and weather variability (using a baseline discount rate of 1.185%). The baseline estimate is an aggregated 
present value benefit of $0.55B for flash flood warnings (in 2020$). 

6.2 Introduction to Application Area 

“Flooding is an overflowing of water onto land that is normally dry. Floods can happen during 
heavy rains, when ocean waves come on shore, when snow melts quickly, or when dams or 
levees break. Damaging flooding may happen with only a few inches of water, or it may cover a 
house to the rooftop. Floods can occur within minutes or over a long period (of time), and may 
last days, weeks, or longer. Floods are the most common and widespread of all weather-related 
disasters. … Flooding occurs in every U.S. state and territory, and is a threat experienced 
anywhere in the world that receives rain. In the U.S., floods kill more people each year than 
tornadoes, hurricanes, or lightning combined” [NOAA NSSL 2021]. 

The top eight common causes of flooding: 

1. Heavy rains: the simplest explanation for flooding is heavy rains, which is why 
rainfall amount and rate are useful information 

2. Overflowing rivers 

3. Broken (or failed) dams 

4. Urban drainage basins being overrun or eliminated 
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5. Storm surges and tsunamis 

6. (Overflowing) channels with steep sides 

7. A lack of vegetation (allowing water to flow unimpeded) 

8. Melting snow and ice [NOAA NSSL 2021]  

Related to wildfire impacts and to the use of GOES-R to monitor burn areas, a contributing factor to 
flooding is the presence of burn scars from land previously subjected to major wildfires now denuded of 
vegetation. Without the vegetation that was present prior to the wildfire, water and mud flow unimpeded 
across the burned area. 

6.2.1 GOES-R and Rainfall 

Data regarding rainfall is essential for the generation of warnings and the management of water resources. 
Satellites with IR or visible (VIS) sounder and/or imager instruments contribute to the determination of 
rainfall information. Satellite measurements are able to fill the gaps worldwide not otherwise covered by 
in situ sensors. Sensors based on microwave techniques or active sensors intended for precipitation 
measurements may not have some of the limitations that an IR/VIS sensor will have, but most of these 
types of systems are in non-geostationary orbit, with different coverage properties. 

Radiance values from five IR channels, and the differences between those specific channels, are used to 
retrieve rain rates. Cloud properties can be determined from these measurements, including the water or 
ice content within the cloud. 

GOES-R imagery also provides important contributions to situational awareness for forecasters and has 
important uses in development of precipitation and flood products. 

6.3 Inputs from TPIO-Derived from NOSIA II Data 

According to TPIO’s NOSIA II data analysis, GOES-R, in the area of integrated water products, made a 
contribution to models of 2.36% and a contribution to non-model products of 7.88%. These resulted in a 
total GOES-R contribution to flooding and integrated water products of 10.24%. 

6.4 Benefit Assessment for Flood Warning and Hydrology 

For this benefit area, we focus on the potential reduction in loss of life primarily related to flash flooding. 
There is a well-founded research analysis of the causes and situations surrounding loss of life in flash 
floods. While some fatalities are likely unavoidable due to circumstances, many are avoidable given 
sufficient warning and prior understanding of appropriate response as well as communicating appropriate 
responses are part of the warning process [Lazrus et al. 2016][Morss et al. 2016] [Morss et al. 2015]. The 
majority of flood-related fatalities are in flash floods (as opposed to riverine floods, which are temporally 
slower to evolve) [Ashley and Ashley 2008]. General findings on vulnerable populations and 
circumstances of flash flood fatalities on a case-by-case base suggest that prior preparation and education, 
timely warnings, and informed decisionmaking had and could reduce fatalities [Parker et al. 2005] 
[Špitalara et al. 2014] [Terti et al. 2017].  

To assess potential GOES-R-related benefits, we obtained historical fatality data from NOAA [NOAA 
Weather.gov 2022] focusing on the “Flood Fatalities” statistics from 1959 through 2018. Regression 
analysis indicates there has been a small downward trend in flood fatalities as per regression from 1959 to 
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2018, as shown in Figure 19. Note that this analysis was used to support our assumptions but not 
specifically to model reduced fatalities for the benefits assessment. That calculation is described next. 

 
Figure 19.  Historical and fitted flood fatalities from 1959 through 2018 [NOAA Weather.gov 2022]. 

We took the 30-year average of flood fatalities from 1959 through 1988 and compared these to the 30-
year average from 1989 through 2018. Furthermore, we took the difference in these averages as reduction 
in fatalities and assumed that 30% of this reduction is attributable to weather information. We then used 
TPIO’s estimate of 10.24% of the contribution of GOES-R to hydrology and water resources products. 
This yielded an estimated 1.59 lives saved per year attributable to GOES-R information as shown in 
Table 12. Multiplying the lives saved per year by the USDOT VSL (2020$), we derived benefits in 
reduced flood-related fatalities of $18.4M for the 2018 base year. 

Table 12.  GOES-R Attributable Benefits from Reducing Flash Flooding Fatalities 

Analysis Factors Factor Value 
Difference in 30-year average annual fatalities (1959–1988 vs. 
1989–2018) n/a 51.77 
Reduction in fatalities attributable to weather information 30% 15.53 
Percent of this reduction attributable to GOES-R n/a 10.24% 
Lives saved attributable to GOES-R, per year n/a 1.59 
VSL—USDOT 2020 base year VSL n/a $11,600,000 
Reduced fatalities benefit (2018) n/a $18,443,183 
 

As with other benefit areas, we assumed changes in weather variability would exacerbate flooding 
impacts and factored this in as an annual increase in costs of 1.5%. We further assumed population 
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growth would increase impacts by 0.572% annually and per capita income growth would compound the 
value of benefits by 1.469%. We derived present value benefit estimates using the five applicable rates of 
discount as shown in Table 13 in billions of 2020$. Our calculations yielded the baseline present value 
estimate of GOES-R contribution to flash flood warnings of $0.55B. 

Table 13.  Present Value Estimates of GOES-R Contribution to Flash Flood Warnings 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 0.64 0.62 0.55 0.45 0.30 

 

6.5 Discussion—Key Uncertainties and Recommended Future Efforts 

Although GOES-R-derived NOAA/NESDIS products report rainfall rates, we do not believe these data 
are fully incorporated into forecast end products at this time. Therefore, we feel that future research and 
effort are likely to yield additional socioeconomic value once these data are more fully utilized in such 
end products.  

A key uncertainty in this analysis is the factor for the percent of reduction in fatalities attributable to 
weather information. We applied a 30% factor for the current analysis but suggest further research is 
needed to refine this value. 
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7. Flash Flood Warnings—Damages 

7.1 Summary 

To estimate benefits of GOES-R related to physical damages from flash flooding, we calculate potential 
reductions in socioeconomic impacts with appropriate information and response actions related to 
building structures and building contents. Building on existing information resources, we implemented 
the following steps to derive an annual benefit estimate:  

• Obtained data on damage losses from flood (1990–2015) (this includes riverine flooding) 

• Calculated the average annual losses (replacing 2017 with the average from the other years as it 
appears to be a significant outlier)19 

• Assumed of this flooding 50% is flash flood and 50% riverine to derive the portion that is flash 
flood damages. (Note we feel this is a key unknown parameter.) 

• From a study recently published in BAMS [Kreibich et al.] based on analysis in Germany, we 
took the percent of damages that can be mitigated with warnings and preventive actions. (Note 
we feel this is a key unknown parameter.) 

• We apportioned this to structural damage (two thirds) and contents damages (one third), based on 
insurance data 

• Based on Kreibich et al. [Ibid], we applied 2% of structure and 4% of contents damage can be 
mitigated in flash floods with warnings and appropriate response 

• This gives us the avoided damages ($37.27M) 

• We then used TPIO estimate of contribution of GOES-R to hydro products (10.24%) to derive an 
estimate of annual GOES-R benefits ($3.82M) 

This provided us with a baseline year annual benefit from GOES-R of $3.82M. We then aggregated these 
over the lifetime of the project, accounting for increases in wealth, population, and weather variability 
(using a baseline discount rate of 1.185%). The baseline estimate is a present value benefit of $0.11B (in 
2020$). 

7.2 Inputs from TPIO-Derived from NOSIA II Data 

According to TPIO’s NOSIA II data analysis, GOES-R, in the area of integrated water products, made a 
contribution to models of 2.36% and a contribution to non-model products of 7.88%. These resulted in a 
total GOES-R contribution to flooding and integrated water products of 10.24%. 

7.3 Introduction to Application Area 

These GOES-R information inputs and applications in this benefit area are essentially the same as those 
described in section 6.2 for flash flood warnings fatalities. 

 
19 Note that not replacing this outlier would increase our overall benefit estimates, so we took a conservative approach.  
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7.4 Benefit Assessment 

We focus on the potential avoided damage costs from flash floods with flash flood warnings and 
appropriate preventative actions. We obtained estimates on the annual economic damages from floods and 
flash floods from the statista website [Fernández 2022]. The website statista.com provides data on 
“Economic damage caused by floods and flash floods in the U.S. from 1995 to 2020.” The source of this 
information is not available without a subscription, but we note that this data appears to be based on the 
NOAA Billion Dollar Disaster Events database information. The statista data indicates that this 
information is for floods and flash floods (e.g., does not separate flash floods from riverine floods). 
Therefore, we assume that 50% is riverine and 50% flash flood damages.  

Figure 20 shows the annual damages in millions of from 1995 to 2019 (21 years). As 2017 damages 
appear to be significantly larger damages than indicated in any other year, we dropped the 2017 value and 
took the average of the other 20 years. This conservative approach may thus understate the actual average 
annual damages. The average annual damages of $2.795B compares reasonably with the recently reported 
1980–2021 annual average flood damages of $4.0B (in 2022$) based on the NOAA NCEI “U.S. Billion-
dollar Weather and Climate Disasters” presentation [NCEI 2022B]. We further note that we did not 
undertake a CPI adjustment as currently it was unclear if the damage data was in real or nominal terms. 
By assuming it was real in real terms, and not undertaking the CPI adjustment, we are being conservative 
by not adjusting annual damages upward. 

 
Figure 20.  Annual U.S. flood damages [NCEI 2022B]. 

From the Insurance Information Institute (III) website, we obtained information that for property contents, 
“the coverage is generally 50 to 70 percent of the insurance you have on the structure of the house” [III 
2022]. We thus assumed that from total damages, two thirds is structure and one third is contents. This 
becomes relevant as Kreibich et al. [Kreibich et al. 2021] estimated different loss reductions rates for 
structure than for contents. 
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Kreibich et al. [Kreibich et al. 2021] found that “The average reduction of the household contents loss 
ratio is 4 percentage points (averaged across all matching methods), a reduction of 3,800 EUR for the 
average treatment recipient (Fig. 1, averaged across all matching methods). This is substantial in 
comparison with the mean (median) contents loss ratio of 21% (10%) and absolute contents loss of 
17,000 (7,700) EUR. For the building loss ratio, the average reduction is 2 percentage points (averaged 
across all matching methods), a loss reduction of 10,000 EUR (Fig. 1, averaged across all matching 
methods)” [Ibid, p. E1456]. Thus Kreibich et al. [Ibid] find that with flash flood warnings and appropriate 
prior preparation, structural losses can be reduced by 2% and content losses by 4%. We apply these 
factors the estimated U.S. structure and content losses as shown in Table 14. As shown in Table 14, we 
thus estimated that flash flood warnings can reduce U.S. losses by $37.27M. We then apply the TPIO 
estimate of contribution of GOES-R to hydro products (10.24%) to derive an estimate of annual GOES-R 
benefits ($3.82M). 

Table 14.  Reduced Flash Flood Damages 

Analysis Factors Factor Value 
Average annual flash flood damages (millions) n/a  $2,795.24  

Assume 50% is flash floods 50% $1,397.62  
Structure 66.70% $931.75  

Loss reduction—structure 2% 18.63 
Contents 33.30% $465.87  

Loss reduction—contents 4% $18.63  
Total damage reduction  n/a $37.27  
Percent of this reduction attributable to GOES-R  n/a 10.24% 

Damage reduction attributable to GOES-R  n/a $3,815,610  
 

As with other benefit areas, we assumed changes in weather variability would exacerbate impacts and 
factored this in as an annual increase in costs of 1.5%. We further assumed population growth would 
increase impacts by 0.572% annually and per capita income growth would compound the value of 
benefits by 1.469%. 

We derived lower- and upper-bound present value benefit estimates using the five applicable rates of 
discount as shown in Table 15 in billions of 2020$. Our baseline benefit estimate for GOES-R attributable 
reduction in property damage from flash floods is $0.11B (2020$). 

Table 15.  GOES-R Contribution to Reduced Flash Flood Damages 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 0.13 0.13 0.11 0.09 0.06 

 

7.5 Discussion—Key Uncertainties and Recommended Future Efforts 

We note that a primary uncertainty in this approach is the allocation of 50% flood damages to riverine 
flooding and 50% to flash flooding. We assume that with additional research this allocation could be 
better characterized.  
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The key study relating warning information to damage reduction is the Kreibich et al. [Kreibich et al. 
2021] work, which is an empirical analysis conducted in Germany. A key finding of that study is that 
warnings are associated with reduced structural and building content losses but generally only where there 
has been prior education and preparatory actions. Similar future work is needed to support Kreibich et 
al.’s [Ibid] findings in the United States. 

Finally, we used the TPIO estimate of the contribution of GOES-R to hydro products as our estimate of 
the contribution of GOES-R in flash flood damage reduction. This could be examined further to 
determine the relationship between hydro products and flash flood products and services to assess if this 
is the best estimate of GOES-R contribution.  

 

 



43 

8. Severe Thunderstorms and Tornadoes  

8.1 Summary Result 

To estimate benefits of GOES-R related to impacts of severe thunderstorms and tornadoes, we calculated 
reductions in fatalities due to severe weather (primarily lightning and tornadoes). Building on existing 
information resources, we implemented the following steps to derive an annual benefit estimate:  

• We obtained annual fatality data (for lightning and tornadoes) from the NOAA Weather Related 
Fatality and Injury Statistics [NOAA weather.gov 2021] 

• We assumed that, without improved weather information and other actions, fatalities would have 
remained at the 1940–1979 average (314.1) 

• We further assumed that, with improved weather information and other actions, fatalities have 
been reduced to the 1980–2018 average (114.6) 

• We calculated the reduction in lives lost as the difference between these averages (199.5). (Note 
we feel this is a key uncertain parameter.) 

• We assumed that 20% of this is attributable to improved weather information (39.89 lives saved). 
(Note we feel this is a key uncertain parameter.) 

• We then applied a 13.96% factor as the contribution attributable to GOES-R (5.57 lives saved) 
(TPIO number) 

• We applied USDOT 2020 base year VSL ($11.6M) ($64.6M/year attributable to GOES-R). 

This provided us with a baseline year annual benefit from GOES-R of $11.6M (2020$). We then 
aggregated these over the lifetime of the project, accounting for increases in wealth, population, and 
weather variability (using a baseline discount rate of 1.185%). The baseline estimate is an aggregated 
present value benefit of $1.94B (in 2020$). 

8.2 Introduction to Application Area 

Meteorological products for severe storm watches, tornado watches, lightning, and outlooks for 
convective weather and fire are issued by NOAA’s Storm Prediction Center (Figure 21). Other warnings 
and related products are issued by the local WFOs. Specific products include: 

• Current weather watches (severe thunderstorm or tornado) over the continental United States 

• Current mesoscale discussions (MD) 

• Convective outlooks (severe thunderstorms) for Day 1, Day 2, Day 3, and Day 4 through 8 

• Thunderstorm outlooks (in 4-to 8-hour time periods) 
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• Fire weather outlooks (Day 1, Day 2, and Day 3 through 8).20 

 
Figure 21.  Example text products from the Storm Prediction Center (NOAA/SPC). 

The NDFD is a suite of products generated by the NWS using regional WFO data and model-outputs 
from the National Centers for Environmental Prediction (NCEP) [NOAA NCEI NDFD 2022]. NDFD is 
used to make text, graphic, and digital products for emergency managers and the public. NDFD also 
provides data for commercial weather companies to generate their own products based on NWS forecasts. 
This information is available via the NCEI. GOES satellite data are available via the GOES Image 
Viewer. The NDFD uses GOES-R data as one of its many sources of input (see: 
https://www.ncei.noaa.gov/products/satellite/goes-r-series).  

We have included information on how the GOES-R GLM data are used in support of thunderstorm 
warnings in Appendix F. 

 
20 This is obviously a cross-over area with our “Wildfires” benefit area, which illustrates the complexity and potential for 
possibly double-counting benefits. We note though that this benefit area focused on fatalities and our wildfire benefit assessment 
focused on reduced costs and thus there is likely little if any overlap between the two. 

https://www.ncei.noaa.gov/products/satellite/goes-r-series
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8.3 Inputs from TPIO-Derived NOSIA II Data 

The severe weather products had a GOES-R contribution to models of 0.8% and a GOES-R contribution 
to non-model products of 13.16%. These resulted in a total GOES-R contribution to severe weather 
products of 13.96% 

8.4 Benefit Assessment 

To derive benefit estimates related to severe thunderstorms, we focused on actual and potential reductions 
in fatalities. We obtained annual fatality information from NOAA “Weather Related Fatality and Injury 
Statistics” [NOAA weather.gov 2021]. We combined lightning and tornado fatalities for analysis as severe 
weather for this benefit area. 

As shown in Figure 22, there has been a downward trend in average annual fatalities over the last eight 
decades with a possible increase in the last decade. 

 
Figure 22.  Average annual severe weather (lightning and tornadoes) fatalities by decade (NOAA). 

For the current analysis, we assumed that without weather information (and other actions mitigating 
weather impacts), fatalities would have remained at the 1940–1979 average annual value of 314.05. We 
further assumed that, because of weather information (and other actions mitigating weather impacts), 
fatalities have been reduced to the 1980–2018 average of 114.59, representing a fatality reduction of 
199.46. This approach may underestimate fatality reductions as population increases would have 
increased the average fatalities without mitigation. We then assumed that 20% of this is attributable to 
improved weather information. This is a key uncertainty parameter. Further, we assumed that 13.96% of 
this is attributable to GOES-R as per input from TPIO. We applied the statistical life (VSL) value 
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estimate of $11.6M to the 5.57 fewer fatalities attributable to GOES-R. As show in Table 16, this yielded 
an annual benefit estimate (2020$) of $64.6M, which we used as our baseline benefit estimate.  

Table 16.  Derivation of GOES-R Contribution to Reduced Severe Thunderstorm Fatalities 

Analysis Factors Factor Value 
Average fatalities 1940-1979  n/a 314.05 
Average fatalities 1980-2018  n/a 114.59 
Reduction in fatalities  n/a 199.46 
Attributable to improved weather information 20% 39.89 
Attributable to GOES-R (TPIO) 13.96% 5.57 
USDOT 2020 base-year VSL  n/a $11,600,000  
Benefit from GOES-R (2020$)  n/a $64,601,400.53  
 

As with other benefit areas, we assumed changes in weather variability would exacerbate severe 
thunderstorm impacts and factored this in as an annual increase in costs of 1.5%. We further assumed 
population growth would increase impacts by 0.572% annually and per capita income growth would 
compound the value of benefits by 1.469%. We derived a range of present value benefit estimates using 
the five applicable rates of discount as shown in Table 17 in billions of 2020$. Our baseline annual 
benefit estimate is $1.94B (2020$). 

Table 17.  GOES-R Contribution to Reduced Severe Thunderstorm Fatalities 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 2.24 2.16 1.94 1.58 1.06 

 

8.5 Discussion—Key Uncertainties and Recommended Future Efforts 

Although weather radars play a vital role in the prediction, detection, and monitoring of severe 
thunderstorms (including tornadoes), GOES-R is also an important contributor to severe thunderstorm 
and tornado watches, warnings, and other products. 

The uncertainties in this analysis are (1) the estimated difference in lives lost, which we used as a measure 
of the impact of improved weather information, and (2) the degree to which avoidance of such loss is 
attributable to improved weather information or better situational awareness for forecasters or other 
factors such as better sheltering [Simmons and Sutter 2011]. We applied a 20% factor but recommend 
further research to better refine this value. 

We note that Rowley, Riley, and Reed [Rowley et al. 2018] provide a bibliography of studies on the 
economic impact of tornado warnings and how people behave with advanced warning, organized into 
four topic areas potentially directly mappable to the value chain process: (1) economic impact, risk, and 
mitigation; (2) public perception and behavior; (3) tornado identification and technology; and (4) warning 
process, development, and delivery. Also specific to this area is work by Kevin Simmons and Dan Sutter 
on the economics of tornadoes, including their 2015 book [Simmons and Sutter 2011]. These resources 
could be examined in more detail to see if they can better inform the current analysis. 
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We also note that, although the majority of our analysis herein centered on benefits from the ABI sensor 
and several of the UPS capabilities, we also considered the benefits from the GLM in severe weather 
monitoring, tracking, and forecasting. Unfortunately, we ran out of the resources and economic data 
necessary to properly assess even a few of the related GOES-R contributing products. Matthias Steiner, 
Senior Scientist and Section Head at the UCAR Research Applications Lab (RAL), and colleagues from 
the National Center for Atmospheric Research, Boulder CO; AvMet Applications, Inc., Reston, VA; and 
the Federal Aviation Administration (FAA), Washington, D.C., have published several related articles 
[Steiner et al. (2013), (2014), (2015), and (2016)]. 
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9. Drought 

9.1 Summary 

To estimate benefits of GOES-R related to impacts of drought, we calculated potential reductions in 
socioeconomic impacts from drought with appropriate information and response actions. Building on 
existing information resources, we implemented the following steps to derive an annual benefit estimate:  

• Obtained data on drought disasters from 1980 through 2022 (2020$) ($249B) 

• Calculated the average annual drought damages ($5.93B) 

• Assumed 10% of these losses are or could be mitigated with drought information, warnings, and 
decision-support tools ($592.9M). (Note we feel this is a key unknown parameter.) 

• Assumed 10.24% of this information is attributable to GOES-R ($60.7M) (TPIO number for 
hydrology) 

This provided us with a baseline year annual benefit from GOES-R of $60.7M. We then aggregated these 
over the lifetime of the project, accounting for increases in wealth, population, and weather variability 
(using a baseline discount rate of 1.185%). The baseline estimate is a present value benefit of $1.82B (in 
2020$). 

9.2 Introduction to Application Area 

Drought forecasting systems use models fed by climatic and atmospheric data (historical/seasonal 
weather patterns, real-time meteorological monitoring, and weather forecasts) to predict the 
probability of a drought occurring in a region or area of interest in the future (up to approximately 
three months). Drought forecasting systems are an important part of early warning systems, as 
they provide lead-time to planners for threat responses, which helps minimize drought impact 
risk. Drought forecasting has great impact on agricultural activity and water availability and is 
therefore particularly important for ensuring food and water security. Effective forecasting 
systems can give enough lead time to adequately plan for water storage, identify alternative 
sources of freshwater, implement new (water-saving) agricultural practices, and import food and 
water, if necessary [UN CTC-N 2018].  

Scientists can predict the likelihood of a drought by careful monitoring of rainfall, river flow, and soil 
moisture. 

9.2.1 Drought Types 

Drought has traditionally been categorized as one of four types—meteorological, 
hydrological, agricultural, and socioeconomic:  

• Meteorological drought: Refers to a deficit in precipitation over some period of time while 
taking into account differences in local climatology.  

• Hydrological drought: If deficits in net water supply at the surface become large, 
hydrological drought can develop as reflected by groundwater, river, or reservoir levels 
dropping below normal.  
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• Agricultural drought: When plant water requirements are not met during the growing season, 
especially during certain periods critical for yield development, agricultural drought can 
result.  

• Socioeconomic drought considers the impact of drought conditions on the supply and demand 
of economic goods and services” episodic [Wilhite and Glantz 1985].  

• Ecological drought: More recently, this fifth drought type has been proposed, referring to “an 
episodic deficit in water availability that drives ecosystems beyond thresholds of 
vulnerability, affects ecosystem services, and triggers feedback between natural and human 
systems” [Crausbay et al. 2017].  

It should be noted that more than one drought type can occur at the same time at a given location 
and that droughts can transition from one type to another as conditions and impacts evolve with 
time [Otkin et.al. 2018]. 

Even more recently, the “flash drought” type has been identified. It refers to the drought that develops and 
intensifies over a short period of time. 

A number of tools available for drought prediction and monitoring are [USDA National Agricultural 
Library 2022]: 

• Weather and Drought Monitor (U.S. Department of Agriculture [USDA], Office of the Chief 
Economist): 

- Meteorologists in USDA’s World Agricultural Outlook Board (WAOB) provide weather 
assessments and realtime yield intelligence for global crop conditions in support of the 
monthly World Agricultural Supply and Demands Estimates (WASDE) report. WAOB’s 
meteorologists are also responsible for the publication of the Weekly Weather and Crop 
Bulletin and are contributing authors to the U.S. Drought Monitor. 

• National Integrated Drought Information System (NIDIS) (Department of Commerce [DOC]). 
National Oceanic and Atmospheric Administration [NOAA]): 

- Ensures “collaboration between different government agencies on drought-related issues” and 
gives information on current drought conditions, forecasting, impacts, and more. 

• Drought Monitor (University of Nebraska – Lincoln): 

- “A synthesis of multiple indices, outlooks and news accounts, representing a consensus of 
federal and academic scientists” from USDA, DOC, the Department of the Interior [DOI] and 
the National Drought Mitigation Center (NDMC).  

• Evaporative Stress Index (ESI) (USDA, Agricultural Research Service): 

- The ESI describes temporal anomalies in evapotranspiration (ET), highlighting areas with 
anomalously high or low rates of water use across the land surface. 

• Evaporative Demand Drought Index (EDDI) (Earth System Research Laboratory, NOAA): 
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- “The Evaporative Demand Drought Index (EDDI) is an experimental drought monitoring and 
early warning guidance tool. It examines how anomalous the atmospheric evaporative 
demand (E0; also known as ʻthe thirst of the atmosphereʼ) is for a given location and across a 
time period of interest.” 

• Advanced Hydrologic Prediction Service (AHPS)21 (DOC/NOAA/NWS): 

- “Provides new forecast products (including visual displays) depicting the magnitude and 
uncertainty of occurrence for hydrologic events from hours to days to weeks.” 

• Paleoclimatology Data (DOC/NOAA/NESDIS): 

- Paleoclimatology data are derived from natural sources such as tree rings, ice cores, corals, 
and ocean and lake sediments. These proxy climate data extend the archive of weather and 
climate information hundreds to millions of years. The data include geophysical or biological 
measurement time series and some reconstructed climate variables such as temperature and 
precipitation. 

• Water Watch (DOI/United States Geological Survey [USGS]): 

- A compilation of “maps and graphs of current water resources conditions” including daily 
streamflow condition maps. Daily streamflow condition maps depict streamflow conditions 
as measured at United States Geological Survey (USGS) gaging stations. Please note that 
“the real-time data used to produce the maps are provisional and have not been reviewed or 
edited. The data may be subject to significant change.” 

• Weekly Weather and Crop Bulletin (USDA/Joint Agricultural Weather Facility): 

- Contains “weekly national agricultural weather summaries, including the weatherʼs effect on 
crops; summaries and farm progress for 44 states and the New England area. This report 
includes any corrections to the Crop Progress data released the previous day.” 

• Handbook of Drought Indicators and Indices (World Meteorological Organization [WMO], 
Global Water Partnership): 

- “This Handbook of Drought Indicators and is based on available literature and draws findings 
from relevant works wherever possible. The handbook addresses the needs of practitioners 
and policymakers and is considered as a resource guide/material for practitioners and not an 
academic paper. This publication is a ‘living document’ and will be updated based on the 
experiences of its readers.” 

We provide examples of NWS’s Climate Prediction Center (CPC) drought information products in Figure 
23: 

 
21 AHPS uses GOES DCS Gage data. See the background data at:                            
https://water.weather.gov/ahps/about/about.php 

https://water.weather.gov/ahps/about/about.php
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Figure 23.  Examples of NWS CPC drought information products [NWS CPC]. 

Another valuable U.S. government drought product is the USDA’s National Agricultural Statistics 
Service (NASS) “U.S. Crops and Livestock in Drought” graphics and accompanying statistics, an 
example of which we provide in Figure 24. Obviously, crops and livestock are a huge and vital area of the 
U.S. economy that are very sensitive to drought conditions. 

 
Figure 24.  U.S. crops and livestock in drought (USDA NASS).  

9.2.2 GOES-R and Drought 

Many of the tools for drought prediction and monitoring mentioned previously in section 9.2 rely, at least 
in part, on inputs from environmental satellites. The GOES-R series satellites are one of those 
contributing sources.  
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Most people think of drought in the long-term sense (taking place over a period of months to years), 
although these obviously exist more in the realm of climatology. GOES-R data certainly contribute to the 
systems that monitor drought and models that try to predict such outlooks, but there is also a short-term 
drought type, called “flash drought,” that develops and intensifies over a short period of time. GOES-R 
data is also an important contributor to monitoring and forecasting flash droughts. 

Satellites, like GOES-R, measure energy intensities (radiances) at several wavelengths of the 
electromagnetic spectrum. This information is useful because everything — the ground, the 
oceans, the atmosphere, clouds, rain, vegetation, cities, people, etc. — absorbs energy at certain 
wavelengths and emits energy at other wavelengths.22 

Due to the depletion of soil moisture caused by drought, a major indicator of drought is vegetative 
conditions. The GOES-R series ABI is the first GOES to include a “Vegetation/Veggie” band at 0.86 µm. 
Data from this ABI “Veggie” band is a substantial contributor to the Vegetation Drought Response Index 
(VegDRI), produced in collaboration between the NDMC, USGS National Center for Earth Resources 
Observation and Science (EROS), and High Plains Regional Climate Center (HPRCC). “The VegDRI 
calculations integrate satellite-based observations of vegetation conditions, climate data, and other 
biophysical information such as land cover/land use type, soil characteristics, and ecological setting. The 
VegDRI maps that are produced deliver continuous geographic coverage over large areas and have 
inherently finer spatial detail (1-km2 resolution) than other commonly available drought indicators such 
as the U.S. Drought Monitor” [NOAA NIDIS 2022]. We provide an example VegDRI map product in 
Figure 25.  

 
Figure 25.  VegDRI map for July 24, 2022 [NOAA NIDIS 2022].  

The ABI vegetative data can also contribute to the production of a Normalized Difference Vegetation 
Index (NDVI), which “…quantifies vegetation by measuring the difference between near-infrared (which 
vegetation strongly reflects) and red light (which vegetation absorbs)” [GISGeography 2022].   

 
22 Paraphrased from “Satellite-Based Drought Indicators” on the NCEI website accessed on 28 July 2022 at: 
https://www.ncei.noaa.gov/access/monitoring/dyk/satellite-drought 



53 

Although the NDVI is most often produced from polar-orbiting satellite data (i.e., NOAA AVHRR and 
SNPP and JPSS VIIRS), using data from “GOES-R would allow for shorter time averaging and hence 
show faster impacts” [Schmit, T. 2022]. Figure 26 is a global NDVI map product. “Very low values of 
NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow. Moderate values represent shrub 
and grassland (0.2 to 0.3), while high values indicate temperate and tropical rainforests (0.6 to 0.8)” 
[NASA EO 2022].23 

 
Figure 26.  NDVI graphic product [NASA EO 2022]. 

9.3 Inputs from TPIO-Derived from NOSIA II Data 

The hydrology and water resources models, forecasting, products, and services saw a total GOES-R 
contribution of 10.24%. 

9.4 Benefit Assessment 

9.4.1 Drought Impacts 

With respect to the economic magnitude of droughts, Otkin et al. [Otkin et al. 2015] note that “The total 
cost associated with these events has been high, with the 2012 drought alone costing more than $35 
billion, making it one of the most expensive natural disasters in U.S. history” [Ibid, p.1073].  

Ding et al. [Ding et al. 2010] undertook a literature review of the economic impacts of drought, including 
impacts in agricultural and non-agricultural sectors. Impacted non-agricultural sectors include tourism and 
recreation, public utilities (e.g., domestic water supply), landscaping services, navigation, construction, 
and any other activity having significant water consumption or reliance on water. They note that there are 
direct impacts (e.g., reduced agricultural output) as well as secondary impacts (e.g., reduction in food 
processing). They further note that while quantifiable market losses can be significant, “…non-market 

 
23 Accessed from the NASA Earth Observatory website on  July 28. 2022 at: 
https://earthobservatory.nasa.gov/features/MeasuringVegetation 
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losses could be considerable, quantification of such losses are rarely included into drought impact 
assessment or other disaster loss calculation” [Ibid, p.10]. Ding et al. [Ibid] found that drought is a global 
issue and studies have shown that drought can have a significant impact on even developed nations’ 
economies, noting one study showing “The results indicated that the 2002-2003 droughts caused an 
overall reduction of Australian GDP by 1.6%, of which 1% was directly related to agricultural sector, and 
the remaining 0.6% was due to multiplier effects” [Ibid, p.17]. Ding et al. [Ibid] note that “drought is the 
most common natural disaster in the United States (14% of the country experiences severe or extreme 
drought at any one time)”  [Ibid, p.17].  

In a case study of the impacts of drought on a region in north-east Spain, Gil et al. [Gil et al. 2013] model 
secondary and “down-stream” impacts of droughts finding significant local impacts. While Gil et al. 
[Ibid] found direct impacts often 50% or greater in a specific community, they note that “… while indirect 
impacts can be compensated in the macro level by market fluctuations or trends, they are far greater than 
the direct effects in absolute terms” [Ibid, p.2692]. 

Zhou et al. [Zhou et al. 2018] examined over 50,000 U.S. drought records, finding an average of almost 
2,500 drought events/year are recorded, causing average annual losses of $1.684M. Although they did not 
identify an upward trend in the magnitude of drought damages, they note this could be due to the high 
regional variability of drought even while noting that “Spatially, vulnerability to droughts has decreased 
in most of the country” [Ibid].  

Kuwayama et al. [Kuwayama et al. 2018] found direct drought impacts on farm income generally in the 
0.1% to 1.2% but ranging up to 8% per week of drought in some counties.   

9.4.2 Drought Information 

Several studies indicate the accuracy of drought forecasts. For instance, Steinemann [Steinemann 2006] 
noted that “Evaluations of CPC seasonal forecasts issued during 1995–2000 demonstrated positive skill 
for drought seasons in the Southeast. In addition, using evaluation criteria of water managers, 88% of 
forecasts for drought seasons would have appropriately prompted drought responses” [Ibid, p.1353].  

Several studies have demonstrated the actual or potential value of drought warnings, forecasts, indicators, 
or decision support tools. In a survey-based study of household responses to drought in Indonesia, 
Kuswanto et al. [Kuswanto et al. 2019] found that even though respondents felt drought forecasts had 
little accuracy, “Households that changed their agricultural practice experienced significantly different 
losses [i.e., lower] than households that did not do anything differently to their crops.” (p.1). Sharda and 
Srivastava [Sharda and Srivastava 2016] examined the use of ENSO forecasts in a tool for municipal 
water management. Nolan et al. [Nolan et al. 2016]  evaluated the potential benefits of early-warning 
drought indicators for both freshwater availability management and understanding impacts on ecological 
resources. Steinemann et al. [Steinemann et al. 2015] develop a drought indicator finding that 
“Stakeholders report that the framework provides an easily understood and beneficial way to assess and 
communicate drought conditions, validly compare multiple indicators across different locations and time 
scales, quantify risks relative to historic droughts, and determine indicators that would be valuable for 
decision-making” [Ibid, p.1793]. Otkin et al. [Otkin et al. 2015] stated that “Because droughts impact 
more people than any other type of natural disaster, robust drought early warning systems that effectively 
characterize and disseminate information to vulnerable stakeholders are necessary to assist drought 
mitigation and climate adaptation efforts” [Ibid, p.1073]. 
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9.5 Inputs from TPIO-Derived from NOSIA II Data 

The hydrology and water resources models, forecasting, products, and services saw a total GOES-R 
contribution of 10.24%. 

9.6 Benefit Analysis 

For this benefit analysis, we use summary data from drought.gov on the average annual impacts of 
drought in the last 42 years. “Since 1980, the U.S. has sustained 258 weather and climate disasters where 
the overall damage costs reached or exceeded $1 billion (including adjustments based on the Consumer 
Price Index, as of January 2020). Among these, 26 droughts cost the nation at least $249 billion, with an 
average cost of more than $9.6 billion incurred during each event” [NOAA NIDIS 2022A]. This translates 
to an average annual impact of droughts of $5.9B.24   

Next, we assume that 10% of drought impacts are, or could be, mitigated with drought information, 
warnings, and decision support tools for a benefit of drought information of $592.8M. We then apply the 
TPIO factor for hydrology of 10.24% to determine the portion attributable to GOES-R. The annual 
GOES-R benefit in 2018 (measured in 2020$) is taken then as $60.7M as shown in Table 18.  

Table 18.  Drought Related Economic Benefits of GOES-R 

Analysis Factors Factor Value 
Total losses from droughts in billion-dollar disasters (2020$)  n/a $249,000,000,000  
Number of years (1980–2022) 42 n/a  
Average losses per year  n/a $5,928,571,429  
Avoidable with information 10.00% n/a  
Benefit of information  n/a $592,857,143  
Attributable to GOES-R (TPIO) 10.24% n/a  
Annual benefits attributable to GOES-R (2020$)  n/a $60,695,500  
 

As with other benefit areas, we assumed changes in weather variability would exacerbate impacts and 
factored this in as an annual increase in costs of 1.5%. We further assumed population growth would 
increase impacts by 0.572% annually and per capita income growth would compound the value of 
benefits by 1.469%. We derived present value benefit estimates using the five applicable rates of discount 
as shown in Table 19 in billions of 2020$. Our baseline benefit estimate is $1.82B (2020$).  

Table 19.  Present Value Estimates of GOES-R Contribution to Drought 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 2.10 2.03 1.82 1.48 1.00 

 

 
24 “Since 1980, the U.S. has sustained 258 weather and climate disasters where the overall damage costs reached or exceeded $1 
billion (including adjustments based on the Consumer Price Index, as of January 2020). Among these, 26 droughts cost the nation 
at least $249 billion, with an average cost of more than $9.6 billion incurred during each event. Only hurricanes were more 
costly. The cumulative cost for all 258 events exceeds $1.75 trillion” [NOAA NIDIS 2022A]. Accessed May 10, 2022. 
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9.7 Discussion—Key Uncertainties and Recommended Future Efforts 

We assumed 10% of these average annual drought losses are or could be mitigated with drought 
information, warnings, and decision-support tools ($592.9M). While there is literature indicating that 
drought information has value, from the limited literature we reviewed, there is no clear indication of 
what the level of this benefit is.  

We assumed 10.24% of the value of drought information is attributable to GOES-R based on the TPIO-
provided factor for hydrology and related products. As with other TPIO provided numbers, we feel it 
would be useful to better support this attribution with other studies, empirical analysis, or input from 
verification analysis.  

We note that several of these studies reviewed indicated that while there is a physical impact of drought 
(i.e., a decrease in crop production), there may be a counter-intuitive accompanying increase in farm 
revenue. From an economic point of view, this is the result of a decrease (shift) of the supply curve 
interacting with an inelastic demand curve to result in an increase in commodity pricing that offsets the 
decreased production. While an increase in farm revenues may seem beneficial, the overall societal 
outcome can be negative as the increase in farm revenue accompanies an even larger loss of consumer 
welfare (a shift in consumer surplus to producer surplus with an overall negative change in total surplus). 
See Appendix D for a discussion of shifts in producer and consumer surplus). 
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10. General Public Forecasts and Warnings 

10.1 Summary Result 

To estimate benefits of GOES-R related to general public forecasts and warnings, we calculated benefits 
based on U.S. household (HH) WTP studies/surveys for current forecast quality. Building on existing 
information resources, we implemented the following steps to derive an annual benefit estimate:  

• Used existing literature to determine per HH WTP for “current” services in 2006 (2006$) 
($286/HH/year) 

• Obtained U.S. total population estimates for 2018 from U.S. Census projections (326.7M) 

• Adjusted for 3.62% survey respondents indicating that they do not use forecasts (326.7M − 
11.8M = 314.9M) 

• Used HH size from Phase 1 analysis (from U.S. Census) (2.53/HH) to calculate number of 
households in 2018 (124.5M) 

• Multiplied $286 by the number of households for total value of current forecasts ($35.6B) 

• Assumed that 30% of value of forecasts comes from observations based on prior research. (Note 
we feel this is a key uncertain parameter.) 

• Applied 6.38% as attributable to GOES-R (TPIO number) 

• Used CPI to adjust to 2020$ for baseline a benefit of $875.3M/year 

This provided us with a baseline year annual benefit from GOES-R of $875.3M/year (2020$). We then 
aggregated these over the lifetime of the project, accounting for increases in wealth, population, and 
weather variability (using a baseline discount rate of 1.185%). The baseline estimate is an aggregated 
present value benefit of $26.24B (in 2020$). 

10.2 Introduction to Application Area 

Media headlines and statistics often focus upon extreme weather events—tropical cyclones, severe 
thunderstorms, and the tornadoes that such convective events spawn, as well as wildfires, atmospheric 
rivers, and the like. However, each day the American public and industry decisionmakers consult routine 
weather information as a basis for many types of decisions. Routine weather and forecasts, such as rain 
and temperature fluctuations, fair or cloudy, snow, and wind information, are consulted at least daily by 
millions of people. Many people consult multi-day forecasts on either broadcasts or via apps on 
smartphones or the internet. 

The 2019–2022 Strategic Plan of the National Weather Service stated a goal to “improve the accuracy of 
weather and climate forecasts to day-3 for extreme weather events; establishing 10-day forecasts as 
accurate as [then] current 7-day weather forecasts; and providing seamless week 3-4 temperature and 
precipitation forecasts to link information at weather and sub-seasonal timescales” [NOAA NWS 2022]. 

A typical day of routine weather across the CONUS is depicted in Figure 27 for February 6, 2022, with a 
variety of non-severe weather types of events from the GOES-East (16) ABI. GOES-R data contributes in 
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some measure to forecasting and tracking all such weather events. And every day, television broadcast 
and other news media use GOES-R imagery to represent the state of the weather via thousands of venues 
for audiences in the hundreds of millions. 

 
Figure 27.  Typical day of non-severe weather across the CONUS on February 6, 2022 [Twitter NWSWPC 2022].  

The U.S. NWS provides a broad range of products and services to the general public on daily weather 
information. As discussed in Lazo et al [Lazo et al. 2009] “…the average U.S. adult obtains forecasts 115 
times per month, which totals to more than 300 billion forecasts per year by the U.S. public.” While 
severe weather information is critical to the mission of the NWS, Lazo et al. found in their survey of the 
general public that “nearly three-quarters stated that they usually or always use forecasts simply to know 
what the weather will be like” [Ibid]. This includes information obtained directly from the NWS (such as 
Figure 28) as well as the various other communication channels providing NWS-based weather 
information.  



59 

 
Figure 28.  NWS 7-day forecast graphic for May 17, 2022 [NWS 2022C].  

10.3 Inputs from TPIO-Derived from NOSIA II Data 

The general public forecast products had a GOES-R contribution to models of 1.14% and a GOES-R 
contribution to non-model products of 5.25%. These resulted in a total GOES-R contribution to general 
public forecasts and warnings of 6.38%. 

10.4 Benefit Assessment 

To evaluate the benefits from GOES-R in terms of “public” or routine daily weather forecasts, we used 
value estimates from Lazo et al. [Lazo et al. 2009]. In this study, Lazo et al. elicited the value of current 
weather information to U.S. households as shown in Figure 29 [Ibid, p.794] by surveying over 1,400 
household members. The caption in this figure explains the derivation of a $286 per household value for 
weather information in 2006$ (when the survey was implemented). We used this estimate as our baseline 
value of per-household benefits from general (i.e., “public”) weather forecasts. 
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Figure 29.  Derivation of per-household value of current weather information [Lazo et al. 2009]. 

We obtained U.S. total population estimates for 2017 through 2040 from U.S. Census projections [Census 
Bureau 2022B] and used information on household size from our Phase 1 analysis to calculate the number 
of U.S. households in 2018. We next multiplied this number by the $286/household value for a total value 
of current forecasts to U.S. households. We assumed that 30% of the value of forecasts comes from 
observations. This value is based loosely on research by Lazo, Rice, and Hagenstad [Lazo et al. 2010], 
which used expert elicitation to derive an estimate of the contribution of observations to weather forecast 
improvements. This is a key unknown variable that would benefit from future research. We then applied 
the percent of public forecast information attributable to GOES-R (6.38%), as provided by TPIO, to 
derive a total annual benefit from GOES-R of $681M in (2006$). We adjusted this from 2006$ to 2020$ 
using CPI data (to $875.3M/year [2020$]). Table 20 shows this derivation. 
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Table 20.  Derivation of Benefits of GOES-R in Public Weather Forecasts 

Analysis Factors Factor Value 
Value of current weather information per household [Lazo et al. 
2009]($2006) n/a $286.00 

Total population (2018) n/a 326,687.50 
Portion not using forecasts 3.62% 11,826,088 
Population using forecasts n/a 314,861,413 
Average Household (HH) size from Phase 1 work n/a 2.53 
Number of households n/a 124,451,152 
Total benefit 2018 (in 2006$) n/a $35,593,029,348 
Percent attributable to weather observations 30.00% n/a 
Percent attributable to GOES-R (TPIO) 6.38% n/a 
Benefit Attributable to GOES-R n/a $681,783,924 
Inflation Adjustment to 2020$ n/a n/a 

CPI – 2006 201.6 n/a 
CPI – 2020 258.811 n/a 

Adjustment ratio 1.284 n/a 
Value of public forecasts (2020$) attributable to GOES-R ($) n/a $875,263,785.75 
 

We then aggregated the annual benefit estimate of $875.3M using adjustment parameters, including 1.5% 
for increasing weather variability, 0.572% for population growth (assuming constant household sizes), 
and 1.469% per capita GDP growth as per our Phase 1 analysis. 

As shown in Table 21, this yields an aggregated present value benefit estimate of $26.24B at the baseline 
discount rate. This is a significantly larger benefit estimate than some other benefit areas because of (1) 
the ubiquitous use of weather forecasts and information daily by virtually all segments of the U.S. 
population and (2) the large number of forecast users (nearly the entire U.S. population).25 

Table 21.  Present Value Estimates of GOES-R Contribution to Public Weather Forecasts 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 30.31 29.20 26.24 21.34 14.36 

 

10.5 Discussion—Key Uncertainties and Recommended Future Efforts 

The key uncertainty in this benefit area analysis is the percent attributable to weather observations. We 
applied a 30% factor for the current analysis but suggest further research to refine this value. 

 
25 Lazo et al. (2009) estimated that “Assuming that our respondents are representative of the U.S. population and accounting for 
the 3.62% of respondents who do not use forecasts, this means an estimated 300 billion forecasts are obtained by U.S. adults 
each year.” (Italics in the original) [Lazo et al. 2009, pp. 788-789] 
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We note that, in Lazo et al. [Lazo et al. 2009], the per-household value estimate may be a lower bound as 
the maximum offered values for forecasts in the survey was less than the median and thus, the assessment 
did not obtain a good distribution of value estimates at the higher values of the distribution. The benefit 
estimates Lazo et al. [Ibid] derived there may also have included value for non-routine weather and thus, 
there may be some overlap (double counting) between this estimate and values in other benefit areas (e.g., 
for severe weather information and/or air quality information) as evaluated in other benefit areas.  

As of this writing, Lazo et al. are re-implementing virtually the exact same survey as the 2006 survey to 
compare and update results. The current (2022) effort involves making a minor adjustment to the 
valuation question by adding additional offer values to attempt to better frame the median or mean value. 
It is indeterminate whether the 2022 results will yield a similar value to that of the Lazo et al. [Ibid] 
analysis relevant to our GOES-R benefit assessment as we have adjusted for the 2009 $286/HH/year 
value to account for inflation from 2006 to 2020 in the current analysis.   
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11. Aviation Weather 

 
Figure 30.  Still shot of NOAA product loop with aviation flights, GOES GLM and ABI imagery combined to show 

flight routing as severe weather affects flight paths [Lindsey, D.T. and J. Patten 2022].  

11.1 Summary Result 

To estimate benefits of GOES-R contributions related to aviation weather, we calculated the reduction in 
costs to airlines, passengers, and related industries due to the use of forecasts to avoid and manage around 
weather delays. Building on existing information resources, we implemented the following steps to derive 
an annual benefit estimate:  

• We obtained average annual estimates on costs of delays across all users from [FAA APO-100] 
for 2016 through 2019 ($23.8B) adjusted to $28.73B (2020$) 

• We then obtained Bureau of Transportation Statistics (BTS) data on 17-year average percent of 
delays attributable to weather (40.0%) and multiplied delay costs by percent attributable to 
weather to derive weather delay costs ($11.49B) 

• Next, we assumed 20% of weather-related costs could be or are avoided with information 
($2.3B). (Note we feel this is a key uncertain parameter.) 

• We further employed 20.47% of supporting weather information as attributable to GOES-R 
(TPIO number) 

• We derived an annual benefit estimate of reduction in aviation delays due to the contribution of 
GOES-R information ($470M) (2020$) 
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This provided us with a baseline year annual benefit from GOES-R of $470M (2020$). We then 
aggregated these over the lifetime of the project, accounting for increases in wealth and weather 
variability (using a baseline discount rate of 1.185%). We used a projected increase in passenger traffic 
through 2040 to account for increasing demand, rather than the rate of population increase, to account for 
increased air travel. The program baseline estimate is an aggregated present value benefit of $19.67B (in 
2020$). 

11.2 Introduction to Application Area 

Aviation is a highly weather-dependent transportation and economic sector. Weather creates near-
constant operational and safety issues and risks within the National Airspace System. “Pilots need to 
avoid weather that will negatively impact the safety of a flight and understand how it will impact the 
performance of the aircraft. Air traffic controllers need to understand how the environmental temperatures 
will affect the takeoff and landing distances. Passengers need to know if an upcoming weather event will 
cancel future flights. Airlines want to reduce the number of delayed and cancelled flights and need to take 
into consideration weather specific to each airport and region” [Goodman et.al. 2019. p.479]. The three 
types of weather information that may be needed to conduct aircraft operations are observations, analyses, 
and forecasts. The GOES-R series provides a substantial portion of this essential observational 
information for the aviation sector. 

Aviation provides a significant contribution to our economy and to our society. Aviation provides the 
only truly worldwide transportation network, supporting global business and tourism [ATAG 2005]. 
Airlines transported over 4.5 billion passengers in 2019 and facilitates trade by transporting about 
6.5 trillion U.S. dollars of goods, which represents about 1% of all international trade [Ibid]. Although all 
mainline and smaller carriers were impacted by the COVID-19 pandemic, many carriers have emerged 
from this downturn with smaller staffs and reduced schedules. Weather disruptions can have a dramatic 
impact on these reduced-capacity carriers (Figure 31), making advance forecasts and warnings an even 
more vital planning resource. 
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Figure 31.  Flight delays for commercial airlines (flyjetoptions.com). 

In 2019, flight delays cost U.S. airlines, passengers, and others an estimated $33B, according to the FAA. 
Weather continues to be the primary cause of flight delays, accounting for as much as 70 percent of all 
delays [Daily 2021]. Our analysis used a 40% weather attribution factor based on BLS data as noted 
below. The 2021 FAA forecast calls for U.S. carrier domestic passenger growth over the next 20 years to 
average 4.9 percent per year. (This average, however, includes three double-digit growth years during the 
recovery from a very low base in 2021 [FAA 2021].) 

“All three major forms of aviation (general, commercial, cargo) are weather-sensitive industries. 
The portion of delay due to weather represented nearly 10 million minutes in 2013. Delays 
translate into real costs for aircraft operators and passengers. Currently, the cost to the air carrier 
operators for an hour of delay ranges from about $1,400 to $4,500, depending upon the class of 
aircraft and if the delay is on the ground or in the air. If the value of passenger time is included, 
the delay cost increases by another $35 per hour for personal travel or $63 per hour for business 
travel for every person onboard” [FAA 2022]. 

Important parameters related to aviation meteorology are wind and turbulence, fog, visibility, aerosol/ash 
loading, ceiling, rain and snow amounts and rates, icing, ice microphysical parameters, convection and 
precipitation intensity, microbursts, hail, and lightning. Weather conditions that cause or contribute to 
aviation accidents include wind, visibility/ceiling, high density altitude, turbulence, carburetor icing, 
updrafts/downdrafts, precipitation, icing, thunderstorms, wind shear, thermal lift, temperature extremes, 
and lightning [Gultepe et.al. 2019]. 

Severe weather can impact aviation operations on the ground or in-flight (Figure 32). Lightning in the 
vicinity of a terminal aerodrome can cease operations as ground personnel take shelter. Snow, icing, 
severe thunderstorms, and tornadoes can all affect ground operations. 
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Figure 32.  Flight routing around weather-impacted airspace [FAA 2022].  

Aircraft planning requires as-accurate-as-possible forecasts. However, aviation operations also require 
nowcasting and short-term forecasts provided two hours in advance and over two hours for airport ground 
(terminal aerodrome) forecasts. With these short-term horizons, geostationary satellites provide a valuable 
tool for observations, nowcasting, situational awareness, and assimilation into numerical weather 
prediction models. 

11.2.1 GOES-R Applicability to Aviation Meteorology 

Due to the large amount of excellent background information regarding the applicability of GOES-R data 
to aviation meteorology, we have moved this text to section F.2.  

11.3 Inputs from TPIO-Derived from NOSIA II Data 

The Aviation Weather MSA, which includes aviation products and volcanic ash products, has a GOES-R 
contribution to models of 0.88% and a GOES-R contribution to non-model products of 19.59%, according 
to TPIO analyses of NOSIA II data. These resulted in a total GOES-R contribution to aviation of 20.47%. 

11.4 Benefit Assessment 

We focused on the potential benefits of reducing weather-related aviation delays across all affected 
parties (airlines, passengers, and related industries). We obtained estimates on the costs of delays across 
all users from [FAA APO-100] for 2016 through 2019 (see Table 22). This resource provided cost 
estimates in 2019$ for four years across impacts to airlines, passengers, lost demand, and indirect losses. 
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We averaged the losses across four years for an average annual cost of delays in billions 2019$ 
($28.38B). 

Table 22.  Cost of Delay Estimates and Weather-Related Share  
(FAA APO-100—Cost of Delay Estimates 2019 Dollars – Billions) 

 2016 2017 2018 2019 4-Year 
Average 

Weather 
Related (40% 
- see Table 

23) 
Airlines 5.60 6.40 7.70 8.30 7.00 2.80 

Passengers 13.30 14.80 16.40 18.10 15.65 6.26 
Lost demand 1.80 2.00 2.20 2.40 2.10 0.84 

Indirect 3.00 3.40 3.90 4.20 3.63 1.45 
Total (2019$B) 23.70 26.60 30.20 33.00 28.38 11.35 

Source: https://www.faa.gov/data_research/aviation_data_statistics/media/cost_delay_estimates.pdf. Accessed January 18, 2022. 

We obtained BTS data on percent of delays attributable to weather (see Table 23). These provided an 
estimate of the average percent of total delays attributable to weather over the 17-year period from 2003 
to 2019.  

Table 23.  Weather’s Share of Delay as Percent of Total Delay-Minutes, by Year [BTS 2022] 

Year % Weather Fitted % Weather26 
2003 49.9 48.1 
2004 49.7 47.0 
2005 47.1 46.0 
2006 44.2 45.0 
2007 43.6 44.0 
2008 45.5 43.0 
2009 44.4 42.0 
2010 38.1 41.0 
2011 38.7 40.0 
2012 33.7 39.0 
2013 36.5 38.0 
2014 32.6 37.0 
2015 32.8 36.0 
2016 32.9 35.0 
2017 33.2 34.0 
2018 38.4 33.0 
2019 38.7 31.9 

Average 40.0%  
Source: https://www.bts.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations#q7. Accessed 
January 18, 2022 

 
26 “Fitted” means using the results of the regression analysis to recalculate or project the value as a fixed point (i.e., with no error) 
on the regression line.  

https://www.faa.gov/data_research/aviation_data_statistics/media/cost_delay_estimates.pdf
https://www.bts.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations#q7
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We then regressed the delay percent on years to evaluate if this had changed over time, thus revealing a 
significant reduction in the percent of delays attributable to weather. This likely is a result of improved 
forecasting as well as more preventive actions on the part of airlines and passengers. Figure 33 shows the 
historical and fitted data from our regression analysis.27 

 
Figure 33.  Percent of airline delays attributable to weather—actual and fitted values (source: Lazo/Aerospace). 

These delay data indicated an average of 40.0% of delays are attributable to weather (Table 24). We 
applied this percent to the total delay costs to estimate the delay costs attributable to weather (last column 
of Table 24). We adjusted this estimate ($11.35B) from 2019$ to 2020$ using CPI data yielding an 
estimate of $11.49B in weather-related delay costs in 2020$. 

Next, we assumed that 20% of weather-related costs could be or are avoided with weather information 
(i.e., the “value of weather information”) ($2.3B). Based on data from TPIO, we then applied the factor of 
20.47% as the portion of weather information attributable to GOES-R. This yielded a baseline estimate of 
the value of GOES-R information in reducing aviation delays of $470,339,130 in the year 2018 in 2020$. 
Table 24 shows the calculations and derivation of this $0.47B annual benefit estimate. 

Table 24a.  Economic Impacts of Aviation Delays and Derivation of GOES-R Benefits — Cost of Delay 
Estimates (Dollars – Billions $2019) [FAA APO-100] 

  2016 2017 2018 2019 4-Year Average 
Airlines 5.6 6.4 7.7 8.3 7 
Passengers 13.3 14.8 16.4 18.1 15.65 
Lost Demand 1.8 2 2.2 2.4 2.1 
Indirect 3 3.4 3.9 4.2 3.63 
Total (2019$B) 23.7 26.6 30.2 33 28.38 

 
27 Note that we used an ordinary least squares regression. More sophisticated analysis could account for the time series aspect of 
this data as well as test for non-linearity. 
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  2016 2017 2018 2019 4-Year Average 
Adjust to 2020$ CPI2019 255.66  n/a  n/a   n/a   
n/a  CPI2020 258.81  n/a  n/a n/a  
CPI adjustment factor n/a n/a 1.0123 n/a   28.73 
 

Table 24b.  Economic Impacts of Aviation Delays and Derivation  
of GOES-R Benefits Analysis—Factors and Values 

Anlaysis Factors Factor Value 
Percent due to weather 40.00% n/a  
Total costs of weather delay ($B)  n/a $11.49  
Percent avoidable with weather information 20.00%  n/a 
Total avoidable costs ($B)  n/a $2.30  
Percent attributable to GOES-R (TPIO) 20.47%  n/a 
Value of GOES-R (202$B)  n/a $0.47  
 

To aggregate these estimates over the lifetime of GOES-R, we obtained estimates of the increases in 
passenger traffic. A report by the Niagara Frontier Transportation Authority (NFTA) [NFTA 2022] 
indicated that “Over the forecast period from 2012 through 2040, passenger traffic is forecast to grow by 
a compound annual growth rate (“CAGR”) of 4.9%” [Ibid]. Alternatively, the FAA Aerospace Forecast 
Fiscal Years 2019–2039 indicates “The 2019 FAA forecast calls for U.S. carrier domestic passenger 
growth over the next 20 years to average 1.8 percent per year” [FAA 2019]. We applied an average of 
these two estimates of 3.35% growth in aviation activities. 

As with other benefit areas, we assumed changes in weather variability would exacerbate delay impacts 
and factored these in as an annual increase in delay costs. We did not, though, factor in population growth 
as we assumed this is factored into the estimates of increases in aviation activity from the FAA and 
NFTA. We did factor in wealth growth as this will relate to the value of time and thusthe socioeconomic 
costs of delays. We aggregated these over the relevant GOES-R lifetime using the five previously 
established discount rates and applicable adjustment factors.  We estimated the baseline present value 
benefit, at the 1.185% discount rate, to be $19.67B in 2020$ as shown in Table 25.  

Table 25.  Present Value Estimates of GOES-R Contribution to Reduced Aviation Delays    

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 23.02 22.11 19.67 15.68 10.09 

 
11.5 Discussion—Key Uncertainties and Recommended Future Efforts 

The key uncertainty in this analysis is the factor for the percent of weather-related costs that could be or 
are avoided with weather information. We applied a 20% factor for the current analysis but suggest 
further research to refine this value. 

We note also that compared to other benefit areas with roughly similar baseline annual benefits, the 
aviation benefits aggregate to a significantly larger present value. This is driven largely by the projected 
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growth in airline traffic of 3.35% applied over the GOES-R lifetime. For other benefit areas, the relevant 
growth rate in population was 0.572%. This difference also highlights the impact of individual parameters 
on the results and suggests the need for further sensitivity analysis. 

We note that there are several areas in aviation that have not been evaluated here, including potentially 
reduced accidents (likely more in civil aviation [Long 2022][Fultz and Ashley 2016]), reductions in 
inflight costs, and flight impacts related to volcanic ash. 

As we noted earlier at the end of section 8.5, although the majority of our analysis herein centered on 
benefits from the ABI sensor and several of the UPS capabilities, we also considered the benefits from the 
GLM in severe weather monitoring, tracking, and forecasting but also in aviation delays at airfields due to 
lightning. Unfortunately, we ran out of the resources and economic data necessary to properly assess even 
a few of the related GOES-R contributing products. Matthias Steiner, Senior Scientist Section Head at the 
UCAR RAL and colleagues from the National Center for Atmospheric Research, Boulder CO; AvMet 
Applications, Inc., Reston, VA; and the FAA, Washington, D.C., have published several related articles 
[Steiner et al. (2013), (2014), (2014A), (2015), and (2016)] . 
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12. Air Quality 

12.1 Summary Result 

To estimate benefits of GOES-R related to air quality, we calculated the reduction in mortality in the 
over-65 population in the United States due to air quality warnings. Building on existing information 
resources, we implemented the following steps to derive an annual benefit estimate:  

• From extant literature [Buonocore et al 2021] , we derived the reduction in mortality risks from 
air quality warning information on ozone and PM2.5 (0.6817 per million population over 65)  

• As Buonocore et al. [Ibid] provide analysis across three cities, we assumed the average reduction 
in mortality for these three cities is applicable nationwide. (Note we feel this is a key unknown 
parameter.) 

• We obtained the total U.S. population in 2020 from the U.S. Census (326,687,501) and percent 
over 65 (15.8%) to determine total U.S. population over 65 (51,616,625) 

• We applied an average mortality rate reduction to determine reduction in mortality (35.18 
people/year) attributable to air quality warnings 

• We applied the percent of warnings information attributable to GOES-R (8.16%) to derive lives 
saved attributable to GOES-R (2.25) (TPIO number) 

• We used VSL from USDOT of $11.6M to determine the GOES-R benefit value for 2020 in 
2020$ ($26.1M/year) 

This provided us with a baseline year annual benefit from GOES-R of $26.1M (2020$). We then 
aggregated these over the lifetime of the project, accounting for increases in wealth, population, and 
weather variability (using a baseline discount rate of 1.185%). The baseline estimate is an aggregated 
present value benefit of $1.00B (in 2020$). 

12.2 Introduction to Application Area 

12.2.1 Air Quality 

“Aerosols are solid and semisolid particles suspended in the air that have harmful impacts on 
human health and the environment. Particles that are smaller than 2.5 µm in aerodynamic 
diameter are the most harmful as they can penetrate deep into the lungs and pass into the 
bloodstream, causing and exacerbating respiratory and cardiovascular diseases. … They 
[aerosols] have many natural and anthropogenic sources, including urban/industrial pollution, 
fires (natural and prescribed), dust/sandstorms, and biogenic emissions” [Kondragunta at al. 
2020].  

Large wildfires and other extreme air-pollution-contributing events can produce “a mixture of air 
pollutants of which particulate matter is the principal public health threat. … Wildfire smoke produced 
from combustion of natural biomass contains thousands of individual compounds, including particulate 
matter, carbon dioxide, water vapor, carbon monoxide, hydrocarbons and other organic chemicals, 
nitrogen oxides, and trace minerals. Wildfires can move into the wildland urban interface, burning homes 
and structures and thereby consuming man-made materials in addition to natural fuels” [Ibid] 
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12.2.2 Impacts 

“Aerosols are a key component of urban/industrial photochemical smog that leads to deteriorated 
air quality. They are also the primary pollutant in natural environmental disasters such as volcanic 
eruptions, dust outbreaks, biomass burning associated with agricultural land clearing, and forest 
fires. High concentrations of aerosols, when inhaled, lead to upper respiratory diseases including 
asthma. They decrease visibility which leads to unsafe conditions for transportation. The 
American Lung Association estimates that more than 133.9 million people in the United States 
live in areas of poor air quality” [GOES-R 2022]. 

Poor air quality is responsible for an estimated more than 100,000 premature deaths in the United States 
each year. Costs from air-pollution-related illnesses are estimated at $150B per year [NWS 2022B]. A 
recent Washington Post article cited a report that found air pollution is responsible for one in six deaths 
worldwide over the past five years [Patel, 2022]. 

12.2.3 Air Quality Warnings 

NOAA’s National Air Quality Forecast Capability (NAQFC) develops and implements operational air 
quality forecast guidance for the United States. NOAA and the EPA partner in developing a national air 
quality forecast.  Operational products include ozone, smoke dust, and fine particulate matter (PM2.5) at 
the surface in the air we breathe [NWS 2022].  

“Under the Clean Air Act, the U.S. Environmental Protection Agency (EPA) is required to 
develop a national air quality monitoring system and uniform air quality index (AQI). EPA 
regulations state that metropolitan statistical areas with a population of more than 350,000 must 
report their AQI daily to the general public; areas with consistently low pollution levels may be 
exempted from this requirement” [Buonocore et al. 2020]. 

Those measurements, as required by the EPA, are monitored with a network of ground-based sensors, and 
those networks are located mainly in urban and suburban regions. Additionally, those ground-based 
sensors may not make measurements every day, resulting in spatial and temporal gaps in the nationwide 
monitoring of PM2.5. 

Smoke from wildfires, pollutants, dust storms, and ash from volcanic eruptions all may contribute to air 
quality. For a visual example, see the Aerosol Watch website, from NOAA’s NESDIS STAR 
organization at https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/. 

Air quality warnings instruct people to reduce exposure by limiting outdoor activity or by staying indoors. 
Some populations have increased sensitivity to high AQI levels and may heed those warnings more so 
than other segments of the population. As indicated in a 2020 study that evaluated three urban areas, “[an] 
individual’s decisions to stay indoors likely depend upon the value of the health benefits compared with 
the value of foregone work and leisure activities” [Ibid]. Not everyone may be aware of the AQI warning, 
or they may not fully understand or misinterpret the warning per the study. 

12.2.4 GOES-R Air Quality Information 

GOES-R provides aerosol optical depth (AOD), smoke and dust mask aerosol detection, and other 
imagery to assist forecasters. These high temporal and spatial resolution space-based measurements 
provide a way to fill the surface gaps for PM2.5 measurements taken by ground sensors. These products 
support both air quality monitoring and forecasting. 

https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/
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The GOES-R ABI sensor, and its high temporal resolution (every 5 minutes) with spatial resolution of 
about 2 km for the CONUS, makes a significant contribution to the forecaster’s ability to warn of air 
quality from PM2.5. Additionally, the aerosol detection of smoke and dust help forecasters to understand 
that environmental area of concern. 

Note that AOD from GOES-R also benefits visibility and aviation forecasts and provides data valuable 
for climate models. Those values are not factored into this air quality topic. A technical paper, presented 
at the 2021 American Geophysical Union (AGU) Annual Meeting, discusses how GOES-R data can be 
used to fill in the gaps between the terrestrial monitoring stations [Kondragunta and Zhang 2021]. 

GOES-R contributes to the air quality products by monitoring aerosols.  

Aerosols are solid and semi-solid particles suspended in the air that have harmful effects on 
human health and environment.  

• Aerosol Optical Depth (AOD) is a qualitative measure of the solid and/or liquid particles 
suspended in the air including dust, sand, volcanic ash, smoke and urban/industrial 
aerosols. AOD measures the amount of light lost due to the presence of aerosols on a 
vertical path through the atmosphere. 

• Aerosol Detection Product (ADP) is a qualitative product that indicates the presence of 
aerosol (dust and/or smoke) for each pixel in the satellite image area. This can be used to 
quickly identify the locations of dust and smoke plumes [GOES-R 2022]. 

Aerosol Watch, a NESDIS STAR-hosted web page, uses satellite imagery from both GOES-R satellite’s 
ABI instrument and from VIIRS sensors on the JPSS and SNPP polar orbiters to show layers of PM2.5 
particles. GOES-R satellite-sensed layers include the Fire RGB, Aerosol Optical Depth, AOD Composite, 
Smoke Dust Mask and Fire as exemplified in Figure 34. 

 
Figure 34.  GOES-16 AOD composite, December 12, 2021 [NESDIS STAR 2022]. 
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“When present in high concentrations, aerosols are easily visible in satellite imagery. For routine 
detection and quantitative retrieval of aerosol amounts, the challenge is to separate the aerosols 
from clouds and bright surfaces. This can be done by comparing values from multiple 
wavelengths in the visible light and thermal infrared portion of the electromagnetic spectrum.  

“GOES-R aerosol products will be more accurate than current GOES (e.g., GOES-N, -O, -P 
series) products (GOES-R ABI accuracy is ~ 10% compared to current GOES-N, -O, -P AOD at 
~20%). Additionally, the availability of these products at 5-minute intervals will be beneficial to 
the user as the products can be tailored to the 15-minute or 30-minute composites to fill the data 
gaps associated with clouds. The use of the near real-time fire and smoke aerosol emissions in 
operational numerical air quality prediction models will greatly enhance the accuracy of forecast 
guidance. The combination of numerical forecast guidance and near real-time satellite aerosol 
imagery will benefit field forecasters in their air quality warnings and alerts” [GOES-R AWG 
2022].  

GOES-R imagery has shown the movement of wildfire smoke across broad portions of the CONUS. The 
impact of wildfire smoke is not limited to the immediate area or even the immediate state where the fire 
occurs. 

12.3 Inputs from TPIO-Derived from NOSIA II Data 

The air quality products had a GOES-R contribution to models of 1.22% and a GOES-R contribution to 
non-model products of 6.94%. This resulted in a total GOES-R contribution to air quality of 8.16%. 

12.4 Benefit Assessment 

The analysis presented here focuses on potential reductions in mortality for over-65 U.S. populations 
nationwide in response to air quality warnings. There is little existing research on responses to air quality 
warnings and related health impacts. For this analysis, we took estimates from Buonocore et al. 
[Buonocore et al. 2021] of reduction in mortality risks from warning information based on historical data. 
Using historical pollution data in three U.S. cities, Buonocore et al. [Ibid] estimated potential benefits of 
air quality warnings focusing on mortality risks among the population above 65 years of age. Under 
strong assumptions of no infiltration of pollutants into the house, no indoor pollution sources, and 
compliance with warnings, Buonocore et al. [Ibid] estimated the benefits associated with avoiding 
ambient ozone and fine particle exposure to be generally less than $14 per person for 1 additional hour 
spent indoors on days when air quality thresholds are exceeded. While we do not directly use their benefit 
estimates, they also calculated changes in mortality per million 65-and-older people per year, which we 
do apply in our analysis. 

We took an average from Buonocore et al.’s [Ibid] analysis across three cities for ozone and PM2.5 per 
million population as shown in Table 26. To be conservative, we used the mean values of mortality risk 
change rather than the maximum. This suggests that there is a reduction in mortality per million 
population over 65 of average of 0.6817 due to air quality warnings.  
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Table 26.  Mortality Risk Reduction with Air Quality Warnings  
(Table VII Buonocore et al. [Ibid] Mortality Risk Change 10-6) 

Location Pollutant 
Annual Concentration-Response 

Function (CRF) 
Denver Ozone 0.0000 
 Denver PM2.5 0.0000 

Los Angeles Ozone 1.6000 
 Los Angeles PM2.5 1.8000 

Pittsburgh Ozone 0.5200 
 Pittsburgh PM2.5 0.1700 
Average  n/a 0.6817 

 
 

We then assumed this average reduction in mortality for these three cities is applicable nationwide and 
obtained the total U.S. population of 326,687,501 in 2018 from the U.S. Census. We also determined that 
15.8% of the total U.S. population was 65 years or older in 201828 yielding a 65+ population of 
51,616,625 [Census Bureau 2022A]. Applying the Buonocore et al. [Buonocore et al. 2021] average 
reduction in mortality risks indicated a reduction in annual mortality in 2018 of 35.2 individuals due to air 
quality warnings. 

We then used information from TPIO with respect to the percent of warnings attributable to GOES-R of 
8.16%, indicating a 2.87-person reduction in mortality attributable to GOES-R. We applied the VSL 
estimate from USDOT of $11.6M to determine GOES-R benefit for 2020 in 2020$ of $33,294,763. We 
show these calculations in Table 27. 

Table 27.  Air Quality Warnings Benefit Calculations 

Analysis Factors Factor Value 
Total U.S. population 2020  n/a 326,687,501 
Percent of population over 65 15.80% n/a  
Population over 65  n/a 51,616,625 
Average mortality reduction per million 0.6817 n/a  
Mortality reduction over 65  n/a 35.19 
Air quality warnings attributable to GOES-R (TPIO) 8.16% n/a  
Lives saved attributable to GOES-R  2.87 n/a 
USDOT 2020 base-year VSL  n/a $11,600,000 
Annual benefit (2020$) attributable to GOES-R ($)  n/a $33,294,763 
 

 
28 Source: https://www.census.gov/data/tables/2018/demo/age-and-sex/2018-older-population.html. Accessed 
January 25, 2022. Percent for both sexes. 

https://www.census.gov/data/tables/2018/demo/age-and-sex/2018-older-population.html
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As with other benefit areas, we assumed changes in weather variability would exacerbate air quality 
impacts and factored this in as an annual increase in impacts of 1.5%. We further assumed population 
growth would increase impacts by 0.572% annually and per capita income growth would compound the 
value of benefits by 1.469%. It may be reasonable to also account for an increase percent of the 
population being 65 years or older, but we have not attempted that adjustment here. The baseline 
aggregated benefit estimate for air quality warnings attributable to GOES-R is $1.00B (2020$) as shown 
in Table 28. 

Table 28.  Present Value Estimates of GOES-R Contribution to Air Quality Warnings 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 1.15 1.11 1.00 0.81 0.55 

 

12.5 Discussion—Key Uncertainties and Recommended Future Efforts 

The key uncertainties in this analysis are (1) how much mortality decreases as a result of air pollution 
warnings (i.e., the value from Buonocore et al., [Buonocore et al. 2021]) and (2) how much GOES-R 
contributes to air quality warnings. 

For the first value, as can be seen in Figure 35, the mean mortality risk reduction varies considerably 
based on location. While further review of the extant literature may provide additional input on these 
values, there is little research on responses to air quality warnings and the subsequent health impacts. 
Further, as Buonocore et al. [Ibid, p.4] noted, “the benefits of warnings under wildfire conditions are 
likely to be much larger than found here.” We have not accounted for air quality warning health benefits 
under conditions of wildfire either here or in the wildfire benefit area analysis and thus this could be an 
area of future analysis. 

For the contribution of GOES-R to air quality warnings, we rely on a point estimate from TPIO. As with 
all other uses of these values in these analyses, further input on the reliability of these estimates would 
improve confidence in the benefit analysis. 

Omitted from the current analysis is consideration of air quality warning benefits to populations not over 
65 years of age. As shown in Figure 35 from the EPA website, research from Neidell [Neidell 2009] 
shows that there is a significant reduction in asthma-related hospitalizations in younger populations when 
air quality alerts are available. We have not attempted to estimate the GOES-R-related economic benefits 
of this or similar morbidity reductions but suggest that this issue could be examined in future research. 
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Figure 35.  Asthma-related hospital child admissions as a function of ozone levels and alerts. Source: 

https://www.epa.gov/pmcourse/patient-exposure-and-air-quality-index: Accessed April 26, 2022 [EPA 2022B] 
(source: https://www.mayoclinic.org/diseases-conditions/copd/symptoms-causes/syc-20353679,  

accessed June 30, 2022).29 

In addition to the reduction in asthma-related hospitalizations in younger populations when air quality 
alerts are available, there are other maladies, whose impact may be positively affected by GOES-R-
improved air quality warnings as indicated on the Mayo Clinic website: 

“•    Asthma: Approximately 25 million Americans have asthma. This equals to about 1 in 13 
Americans, including 8 percent of adults and 7 percent of children. About 20 million U.S. 
adults aged 18 and over have asthma. Asthma is more common in adult women than adult 
men. Asthma is the leading chronic disease in children. 

• Chronic Obstructive Pulmonary Disease (COPD): COPD is a chronic inflammatory lung 
disease that causes obstructed airflow from lungs. Symptoms include breathing difficulty, 
cough, mucus (sputum) production and wheezing. It’s typically caused by long-term 
exposure to irritating gasses or particulate matter. People with COPD are at increased risk of 
developing heart disease, lung cancer and a variety of other conditions. Emphysema and 
chronic bronchitis are the two most common conditions that contribute to COPD” [Mayo 
Clinic 2022]. 

 
29 Caption from EPA website for this Figure “Figure 11. Adjusted asthma hospital admissions (HA) by age on lagged ozone by 
alert status, ages 5-19. Neidell, M.” “Information, Avoidance Behavior, and Health: The Effect of Ozone on Asthma 
Hospitalizations.” Journal of Human Resources 44.2 (2009): 450-478. © 2009 by the Board of Regents of the University of 
Wisconsin System. Reproduced by the permission of the University of Wisconsin Press. Source: 
https://www.epa.gov/pmcourse/patient-exposure-and-air-quality-index  accessed January 25, 2022. 

https://www.epa.gov/pmcourse/patient-exposure-and-air-quality-index
https://www.mayoclinic.org/diseases-conditions/copd/symptoms-causes/syc-20353679
https://www.epa.gov/pmcourse/patient-exposure-and-air-quality-index
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13. Search and Rescue 

13.1 Summary 

To estimate benefits of GOES-R related to search and rescue information, we calculate potential 
reductions in mortality with appropriate information and response actions related to the COSPAS30-
SARSAT Satellite System for Search and Rescue. Building on existing information resources, we 
implemented the following steps to derive an annual benefit estimate: 

• Obtained the number of people saved from the SARSAT website for 2001 through 2020 [NOAA 
SARSAT 2022] 

• Regressed lives on years to identify temporal trend in people saved  

• Using regression results, fitted number of rescues out to 2040 

• Assumed 5% of non-rescued individuals would have died to estimate number of “lives saved.” 
(Note we feel this is a key unknown parameter.) 

• Assumed 50% reliance on satellite information. (Note we feel this is a key unknown 
parameter.) 

• Assumed 50% reliance on GOES-R to derive projected annual number of lives saved. (Note we 
feel this is a key unknown parameter.) 

• Applied VSL to this to derive annual benefits over project lifetime 

• Aggregated present value by discounting to 2020$ 

This provided us with a baseline year annual benefit from GOES-R in 2018 of $177.3M. This increases 
each year with the number of lives saved and increasing VSL. We then applied the baseline discount rate 
of 1.185% and aggregated to 2020$. The baseline estimate is an aggregated present value benefit of 
$1.30B (2020$). 

13.2 Introduction to application area 

Along with the DCS, the SARSAT is yet another UPS provided by the GOES-R Series satellites. 

“As an integral part of the international search and rescue satellite program called COSPAS-
SARSAT, NOAA operates the Search and Rescue Satellite-Aided Tracking (SARSAT) system to 
detect and locate mariners, aviators, and other recreational users in distress almost anywhere in 
the world at any time and in almost any condition. This system uses a network of satellites to 
quickly detect and locate distress signals from emergency beacons onboard aircraft, vessels, and 
from handheld personal locator beacons called PLBs. The SARSAT transponder on board GOES-
R Series satellites provides the capability to immediately detect distress signals from emergency 
beacons and relay them to ground stations - called local user terminals. In turn, this signal is 
routed to a SARSAT mission control center and then sent to a rescue coordination center which 

 
30 COSPAS” is acronym for the Russian expression “Cosmicheskaya Sistyema Poiska Avariynich Sudov,” which means “Space 
System for the Search of Vessels in Distress.” 
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dispatches a search and rescue team to the location of the distress” [GOES-R Program Office, 
2022].  

Figure 36 provides a graphic overview of the overall COSPAS-SARSAT system.  

 
Figure 36.  Overview of the international COSPAS-SARSAT system [Ibid].  

Inputs from TPIO-Derived from NOSIA II Data 

There are no data available from the NOSIA II study/database related to this benefit area. 

13.3 Benefit Assessment 

As discussed in an article in the spring 2013 Proceedings of The Radio Club of America, Inc. [King 2013] 
on “COSPAS-SARSAT: An Overview of the Satellite System that has Saved More than 33,000 Lives 
Worldwide,” as of 2013, “COSPAS-SARSAT, which started as an experiment by four countries in the 
1970s, soon became an international satellite system for search and rescue. The system is now operated 
by more than 40 countries around the world and has been credited with saving over 33,000 lives 
worldwide since it began operating in 1982” [Ibid].  
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The primary contribution of GOES-R in this process is to facilitate rapid communication of emergency 
beacon information from individuals in distress. “The SARSAT transponder on board GOES-R Series 
satellites provides the capability to immediately detect distress signals from emergency beacons and relay 
them to ground stations - called local user terminals” [GOES-R Program Office, 2022]. SARSAT is part 
of the GOES-R UPS suite. 

SARSAT provides rescue services on land and on the water (ocean, lakes, and rivers) and internationally 
as well in cooperation with a large number of countries. We focused on the potential benefit domestically 
and thus may have underestimated benefits. 

The potential loss of life in backcountry situations is documented in part by the National Park Service 
(NPS) through their Mortality Dashboard [NPS 2022]. The NPS Key Statistics CY2014 - CY2016 reports 
that “A total of 990 deaths were reported in national parks from 2014 to 2016 which equals to an average 
of 330 deaths per year or 6 deaths a week” [Ibid]. Assuming a portion of these are related to lost 
individuals suggested the potential value of improved search and rescue processes, including 
communications.  

To estimate the number of impacted individuals, we used the annual data on the “Number of People 
Rescued” from the SARSAT website [NOAA SARSAT 2022]. This website provides “Recent Calendar 
Year Totals in the United States” for the years 2001 through 2020 (20 observations). We undertook an 
ordinary least squares (OLS) regression on these data with U.S. rescues (the number of individuals 
rescued) as the dependent variable and “year” as the only independent variable. The regression model 
yielded: 

U.S. Rescues = -12982.737***  +  6.589 Year***  
(3888.482)†   (1.934)† 

*** Significant at <1.0% † Standard error of the estimate 
Adjusted R square 0.358 (n=20) 

For a more-detailed explanation of this regression model and its results, see Appendix D. 

We then used the regression model to project the number of people rescued through the life of the  
GOES-R (to 2040) as shown in Figure 37. 
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Figure 37.  People saved with SARSAT and projections to 2040 from regression analysis (source: Lazo/Aerospace). 

We note that the existing information on SARSAT often refers to all individuals rescued as “lives saved.” 
Without further information, we assumed that most of those individuals may have survived (albeit after 
some delay and potential suffering) and thus conservatively adjusted the “number saved” to 5% who 
would not have otherwise survived (i.e., would have died). We used the number of “fitted rescues” and 
then used initial (“heuristic”) estimates to adjust for the portion of these whom would not have survived if 
not rescued (5%) and what portion of the SARSAT information is attributable to satellites (50%) and the 
portion of that attributable to GOES-R (50%). We then multiplied these results for each year by the VSL 
value adjusted using the factor for increased wealth (1.469%) over time. Table 29 shows this information 
over the 2018–2040 analysis period.  

Table 29.  Annual Benefit of Fitted Lives Saved 2018–2040 

Year Fitted 
Rescues 

Lives Saved 
(5%) 

Attributable 
to Satellites 

(50%) 

Attributable 
to GOES-R 

(50%) 

VSL (2020 
Base) 

Benefit 

2018 314.82 15.74 7.87 3.94 $11,266,557 $44,336,868 
2019 321.41 16.07 8.04 4.02 $11,432,063 $45,929,817 
2020 328.00 16.40 8.20 4.10 $11,600,000 $47,560,000 
2021 334.59 16.73 8.36 4.18 $11,770,404 $49,228,166 
2022 341.18 17.06 8.53 4.26 $11,943,311 $50,935,079 
2023 347.77 17.39 8.69 4.35 $12,118,758 $52,681,519 
2024 354.36 17.72 8.86 4.43 $12,296,783 $54,468,277 
2025 360.95 18.05 9.02 4.51 $12,477,423 $56,296,161 
2026 367.54 18.38 9.19 4.59 $12,660,716 $58,165,995 
2027 374.13 18.71 9.35 4.68 $12,846,702 $60,078,616 
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Year Fitted 
Rescues 

Lives Saved 
(5%) 

Attributable 
to Satellites 

(50%) 

Attributable 
to GOES-R 

(50%) 

VSL (2020 
Base) 

Benefit 

2028 380.72 19.04 9.52 4.76 $13,035,420 $62,034,878 
2029 387.31 19.37 9.68 4.84 $13,226,910 $64,035,650 
2030 393.89 19.69 9.85 4.92 $13,421,214 $66,081,818 
2031 400.48 20.02 10.01 5.01 $13,618,371 $68,174,284 
2032 407.07 20.35 10.18 5.09 $13,818,425 $70,313,966 
2033 413.66 20.68 10.34 5.17 $14,021,418 $72,501,800 
2034 420.25 21.01 10.51 5.25 $14,227,393 $74,738,739 
2035 426.84 21.34 10.67 5.34 $14,436,393 $77,025,754 
2036 433.43 21.67 10.84 5.42 $14,648,464 $79,363,834 
2037 440.02 22.00 11.00 5.50 $14,863,649 $81,753,984 
2038 446.61 22.33 11.17 5.58 $15,081,996 $84,197,230 
2039 453.20 22.66 11.33 5.67 $15,303,551 $86,694,616 
2040 459.79 22.99 11.49 5.75 $15,528,360 $89,247,207 

 

As we had developed a time series estimate of the number of lives saved, we did not factor in increases in 
weather variability as the benefits are not necessarily “climate dependent” (i.e., this is not a weather 
impact benefit but benefit from the communication systems) nor did we factor in population growth. We 
did factor in per capita income growth would compound the value of benefits by 1.469% (i.e., 
compounded the VSL value). 

We derived present value benefit estimates using the five applicable rates of discount as shown in Table 
30 in billions of 2020$. Our baseline benefit estimate is $1.30B (2020$) as shown in Table 30.  

Table 30.  Present Value Estimates of GOES-R Search and Rescue Benefits 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 1.50 1.44 1.30 1.06 0.72 

 

13.4 Discussion—Key Uncertainties and Recommended Future Efforts 

The key uncertainties in the current analysis are the factors for number of non-rescued individuals who 
would have died and how much the SAR process relied on satellite information and what portion of that 
is attributable to GOES-R versus other satellite information. These factors are:  

• 5% of non-rescued individuals would have died to estimate number of “lives saved” 
• 50% reliance on satellite information 
• 50% reliance on GOES-R to derive projected annual number of lives saved 

Further research is warranted to evaluate each of these initial factor values.  

In addition, more robust regression analysis may be examined for estimating and projecting the time 
trends of number of individuals rescued. It is likely there are non-linear processes involved and we may 
be under- or over-estimating these trends. It would also be reasonably straightforward to develop 
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confidence intervals from the regression analysis of the number of people saved each year. The bounds on 
this are likely much smaller than the uncertainty in the three factors noted above so we have not 
calculated those confidence intervals at this time.  

It may also be worthwhile to explore projected increases in outdoor recreation as there likely have been 
structural changes in the use of the back country for personal recreation with the onset of COVID-19. 
This may have been captured in the regression analysis but could be further explored. 
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14. DCS: Riverine Flood Warnings and Marine Transportation 

14.1 Summary Results 

To estimate benefits of GOES-R related to impacts of riverine flooding and hydrogeological information 
in marine settings, we calculated (1) the reduction in riverine flood damages from warnings and forecasts 
and (2) the reduction in riverine flooding, damages to marine shipping and port property, and fatal 
accidents, both due to DCS data channels. Note that there are multiple benefit assessments in this area 
related to the unique communications capability (aka., UPS) of GOES-R in supporting the GOES DCS.  

This assessment did not attempt a comprehensive valuation of the information carried by the GOES DCS. 
We felt that determining the total value of the service was beyond our scope of work, and that GOES-R 
contribution is for the communication services and their hemispherical coverage that make the other 
services possible. No one should conclude that the values contained herein reflect the total value of the 
various services that are relayed via the DCS UPS.  

Building on existing information resources, we implemented the following steps to derive an annual 
benefit estimate:  

• Riverine flood information through DCS: 

- We obtained 2020 flood damage reduction by U.S. Army Corp of Engineers (USACE) 
[USACE 2022] ($257B) 

- We obtained the reduction by USACE-supported emergency operations (EO) ($1.34M) 

- We calculated the percent attributable to USACE EO (0.0000052%) 

- We then obtained the 10-year average annual riverine flood damage reduction ($161B) 

- We multiplied the 10-year average by the percent reduction to derive an average annual 
benefit ($843K) 

- We applied a USACE-indicated percent dependent on GOES-R DCS (50%). (Note we feel 
this is a key unknown parameter.) 

- We calculated the annual flood reduction benefits attributable to GOES-R ($421K) 

• National Ocean Service’s DCS-related PORTS: 

- We obtained literature comparing impacts between ports with and without PORTS over 10 
years [Wolfe and MacFarland 2013]: 

 Reduction in ship damages (average annual $7.3M) 

 Reduction in average annual accidental loss of life (1.9 lives) 

 Applied USDOT VSL of $11.6M ($22.0M) 

- We summed the reduction in property and fatalities ($29.3M) 
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- We applied a 90% factor for reliance on PORTS data ($26.4M). (Note we feel this is a key 
unknown parameter.) 

- We then applied 10.24% (TPIO number) contribution from GOES-R to derive annual ship 
damages and accidental loss-of-life reduction benefits attributable to GOES-R ($2.64M). 

These provided us with baseline year annual benefits from GOES-R ($421K and $2.64M). We then 
aggregated these over the lifetime of the GOES-R series accounting for increases in wealth, population, 
and weather variability (using a baseline discount rate of 1.185%). The baseline estimate is an aggregated 
present value benefit of $0.09B for benefits from DCS (in 2020$). 

14.2 Introduction to Application Area 

In situ measurements of water levels provide an important contribution to hydrology and flood forecasting 
and support safe navigation of inland waterways and ports in the United States and Canada. Although 
those measurements are not performed by the GOES-R satellite, the reporting of such data are only 
possible in near-realtime by using a unique communications capability of the GOES-R satellite that 
provides hemispheric coverage of the uplink signal in the ultra-high frequency (UHF) band. 

The DCS consists of platforms collecting environmental information primarily in remote areas within the 
footprint of the GOES-R satellites, where the GOES satellites serve as the communications link between 
the remote platform and processing facility.31 Users include U.S. and international agencies responsible 
for monitoring environmental and Earth resources, including U.S. NWS flood warning and forecasting. 
We focus here on (1) potential benefits from riverine flood information made feasible by DCS and 
GOES-R and (2) benefits from the National Ocean Service’s (NOS’s) PORTS system in reducing ship 
damages and accidental loss of life. The DCS also serves multiple international agencies, as well as other 
domestic agencies including the USGS for earthquake monitoring and U.S. Forest Service (USFS) forest 
wildfire operations. We have not attempted to quantify benefits from these services, but these likely 
provide significant additional socioeconomic benefits from GOES-R.32 

The GOES DCS relays the original telemetry data from river, stream, tide, and coastal gages, located 
throughout the hemisphere. Over 30,000 geographically diverse data collection platforms (DCPs) are 
located throughout the western hemisphere that uplink at UHF via the GOES-R UPS for transmission to 
federal and non-federal ground stations (Figure 38). The gages are owned by private, non-federal, and 
federal agencies, and the information is used to manage critical infrastructure, measure levels on the 
nation’s inland waterways, and provide hydrologic data that detects—and is used to warn of—flood 
conditions. Gage data are input into numerical weather prediction models as a verification of precipitation 
levels. 

Sensors on the DCPs include river, stream, tide, and coastal gages for the management of reservoirs, 
locks, and dams. Sensors installed in the nation’s seaports aid pilots entering and departing the ports, thus 
enhancing maritime safety. 

 

 
31 Paraphrased largely from https://www.noaasis.noaa.gov/GOES/GOES_DCS/goes_dcs.html Accessed February 8, 2022. 
32 NESDIS provides several examples and anecdotes of the value and use of DCS information services that could potentially be 
quantified as well. https://www.noaasis.noaa.gov/GOES/GOES_DCS/dcs_in_action.html 

https://www.noaasis.noaa.gov/GOES/GOES_DCS/dcs_in_action.html
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Figure 38.  DCPs transmitting to GOES-R (source: NOAA/Microcom Design). 

The frequency coverage to receive these data collection platform uplink signals is located in a radio 
spectrum that is generally reserved for meteorological or environmental use. There is no commercial 
service that could receive the uplink signals from DCPs in the frequency range allocated for the wide 
coverage area (much of the visible hemisphere) associated with GOES DCS (Figure 39). 
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Figure 39.  Approximate coverage area for GOES-DCS at UHF frequencies (NOAA). 

14.2.1 NOAA’s PORTS 

This assessment examines the value from flood avoidance at the USACE and maritime safety at the 
nation’s ports from NOAA’s NOS. From these data, we have determined the portion of the 
socioeconomic contribution from DCPs related to the unique DCS uplink communications coverage of 
GOES-R. 

Figure 40 indicates the usage of PORTS sensors at U.S. seaports as of 2014. As of January 2022, there are 
36 existing PORTS at 80 of the nation’s top 175 seaports. Those 80 seaports presently host about 88% of 
the total tonnage and about 91% of the total value of cargo from the top 175 seaports. Figure 40 may not 
reflect that updated information. 
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Figure 40.  PORTS installations in U.S. seaports (NOAA NOS). 

14.3 Inputs from TPIO-Derived from NOSIA II Data 

According to TPIO’s NOSIA II data analysis, GOES-R, in the area of integrated water products, made a 
contribution to models of 2.36% and a contribution to non-model products of 7.88%. These resulted in a 
total GOES-R contribution to flooding and integrated water products of 10.24%. 

14.4 Benefit Assessments 

14.4.1 Riverine Flood Warnings: DCS Flood Benefit Calculations 

For riverine flooding, we obtained prevented-flood-damage information from the USACE Annual Flood 
Damage Reduction Report, including the document “Appendix G: Annual Flood Damage Reduction 
Report,” provided by CECW-CE (Hydrology & Hydraulics Community of Practice).33 

We used the 2020 document and data as provided to us by the USACE [USACE 2020]. Table 1 (2020 
document) reported the “Average Damage Reduction FY2011-2020” of $161,834,232 attributable to 
USACE flood control operations [Ibid]. We show the annual and average prevented damages as reported 
by USACE in Figure 41, copied from Appendix G of that report [Ibid]. As can be seen, there is a 
significant year-to-year variation in the benefits of USACE flood control activities, but the last five years 

 
33 The 2020 version is available at https://water.usace.army.mil/a2w/r/cwms_crrel/files/static/v16/APPN-G-2018_FINAL.PDF. 
Accessed February 8, 2022. Table 1 of Appendix G reports on “Flood Damage Reduction by State (Thousands of Dollars) 
During Fiscal Year 2019.” 

https://water.usace.army.mil/a2w/r/cwms_crrel/files/static/v16/APPN-G-2018_FINAL.PDF
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have all been above average. This may suggest an upward trend in benefits partly in relation to increasing 
weather variability. 

 
Figure 41.  Flood damage reduction attributable to USACE flood control operations [USACE 2022].  

For the year 2020, the Appendix G table reports “Reduction by Corps Supported Emergency Operations” 
of $1.344M out of $257.9B or 0.00052% of total avoided damages attributable to emergency operations 
[Ibid]. We focused on the reductions attributable to emergency operations because of the high 
dependency on temporally sensitive data for these operations. Lysanias Broyles (Department of Defense 
[DOD] USACE) stated in an email communication (January 26, 2022) that applying a factor for GOES-R 
of “50 – 67% of flood damages prevented would be appropriate [as] the vast majority of our flood control 
projects use GOES as a method of telemetry.” We used the lower value of 50% for our analysis. Table 31 
shows the derivation of the baseline benefits from reductions in riverine flooding. 

Table 31.  Reduction in Riverine Flood Damages Attributable to GOES-R DCS Systems 

Analysis Factors Factor Value 
Average damage reductions 2010–2019 ($) n/a  $161,834,232  
Reduction by Corps-supported emergency operations (FY2020) n/a $1,344,000  
Total flood damage reduction by the Corps of Engineers (FY2020) n/a $257,913,371,000  
Percent attributable to emergency operations 0.00052%  n/a 
Benefit of emergency operations  n/a $843,327  
Percent dependent on GOES-R DCS (email from USACE) 50.00% n/a  
Annual benefits attributable to GOES-R (2020$)  n/a $421,663  
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14.4.2 PORTS Benefit Calculations 

The maritime transportation-related benefit use of GOES-R DCS systems is the PORTS program aiding 
maritime navigation. NOAA’s PORTS program is a decision support tool to improve the safety and 
efficiency of maritime commerce and coastal resource management through the collection and 
dissemination of observations of water levels, currents, salinity, bridge air gap and meteorological 
parameters for navigational safely and to improve the efficiency of U.S. ports and harbors and ensure the 
protection of coastal marine resources [NOAA 2022B]. The overall PORTS system is pictorially 
represented in Figure 42, which also indicates the critical role of GOES-R DCS in communicating 
information in a time-sensitive manner. 

 
Figure 42.  Operation and functioning of the PORTS system indicating the DCS function [Ibid].  

As indicated by Nathan Holcomb (NOAA - NOS) [Holcomb 2022] on January 31, 202234: 

“… over 90% of PORTS stations depend on GOES as their primary telemetry with cellular 
communications as a backup. The 36 existing PORTS (as of Jan 2022) support safe and efficient 
marine navigation at 80 of the Nation’s top 175 seaports. Those 80 seaports presently host ~88 
percent of the total tonnage and ~91 percent of the total value of cargo from the top 175 
seaports.” 

In 2017, NOAA published an internal economic analysis that looked in more depth at the incidence of 
accidents (allisions35, collisions, and groundings [ACGs]) during the period 2005 to 2016, based on 

 
34 These data appear to have been published in Wolfe and MacFarland [Wolfe and MacFarland 2016]. At this time, we have not 
cross-checked the two sources for consistency, but a brief review suggests that estimates provided by Holcomb are reasonably 
close to those in Wolfe and MacFarland possibly with some adjustments made in the published article. 
35 An allision is “the running of one ship upon another ship that is stationary —distinguished from collision” (source 
https://www.merriam-
webster.com/dictionary/allision#:~:text=Definition%20of%20allision,is%20stationary%20%E2%80%94distinguished%20from%
20collision accessed June 30, 2022) 

https://www.merriam-webster.com/dictionary/allision#:%7E:text=Definition%20of%20allision,is%20stationary%20%E2%80%94distinguished%20from%20collision
https://www.merriam-webster.com/dictionary/allision#:%7E:text=Definition%20of%20allision,is%20stationary%20%E2%80%94distinguished%20from%20collision
https://www.merriam-webster.com/dictionary/allision#:%7E:text=Definition%20of%20allision,is%20stationary%20%E2%80%94distinguished%20from%20collision
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locations with and without PORTS [Wolfe and Mitchell 2018]. Some of the most significant impacts of 
PORTS included: 

“Over 10 years, seaports with access to real-time PORTS information were estimated to have 
realized about $183 million, or two-thirds of total savings, from ACG reduction alone.  There 
were 19 fewer lives lost (value of $102 million), 41 fewer injuries (value of $8 million), lower 
property losses (value of $73 million), and reduced oil pollution remediation costs (value about 
$1 million)” [Ibid, p.1].  

We used the sum of reduced property losses and remediation costs ($73M) over 10 years to derive an 
annual PORTS benefit estimate of $7.3M. For reduced fatalities, we took the annual average (1.9 lives per 
year) and applied the $11.6M VSL for an annual PORTS benefit of $29.3M. Note that we do not use the 
VSL estimate from the NOAA report but use the DOT VSL estimate to maintain consistency with the 
other benefit analysis in this report. We also do not use the injury information as in general, while 
important, reduced morbidity is a significantly smaller benefit than reduced mortality and we do not have 
clear information from the content reviewed of the nature and degree of reduced morbidity to incorporate 
it into our computations. 

We summed the two benefit areas (property and reduced loss of life) and applied the “90% of PORTS 
stations depend on GOES as their primary telemetry” factor [Holcomb 2022] and further assumed that 
10% of the reduction in losses is attributable to the information use.36 This generated a baseline GOES-R 
DCS benefit annual estimate of $2,640,600. 

Using these data, we calculated an annual baseline benefit attributable to the GOES-R DCS system of 
$3.06M. This is likely a conservative estimate of the benefits of GOES-R DCS as we (1) have not  
included any attribution to potentially flood-related reduced loss of life (this may be captured within the 
flash flooding benefit area); (2) have not included benefits from the non-emergency flood prevention 
benefits, which are much more than 99% of the total benefits of DCS; and (3) have not included other 
non-flood/non-PORTS benefit areas from GOES-R DCS systems. In Table 32 we show our calculation of 
the total reduction in marine damages attributable to the GOES-R DCS systems and PORTS. 

Table 32.  Reduction in Marine Damages Attributable to GOES-R DCS Systems and PORTS 

Analysis Factors Factor Value 
Lowered property losses and reduced oil pollution remediation costs n/a  $73,000,000  
Annual average n/a  $7,300,000  
Lives  n/a n/a  

19 fewer lives lost  19.0 n/a 
Annual average  1.9 n/a 
VSL n/a  $11,600,000  
Reduced fatality benefits n/a  $22,040,000  

Total PORTS Benefit n/a  $29,340,000  
Reliance on GOES-R data 90% n/a  
Changes attributable to GOES-R 10% n/a  
PORTS Benefit Attributable to GOES-R ($) n/a  $2,640,600  
Total Riverine Flooding (Table 33) and PORTS Benefits (2020$) n/a  $3,062,263  

 
36 This is a key parameter that should be further evaluated for the appropriate level and application of this adjustment. 
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14.4.3 Aggregation of Benefits: DCS: Riverine Flood Warnings and Marine 
Transportation 

As with other benefit areas, we assumed changes in weather variability would exacerbate flooding 
impacts and factored this in as an annual increase in costs of 1.5%. We further assumed population 
growth would increase impacts by 0.572% annually and per capita income growth would compound the 
value of benefits by 1.469%. We derived the aggregated present value benefit estimates using the five 
applicable rates of discount as shown in Table 33 in billions of 2020$. Our baseline estimate of GOES-R 
benefits in DCS is $0.09B (2020$). 

Table 33.  Benefit Estimates of GOES-R DCS Reduced Riverine Flooding and PORTS Benefits (Billions [2020$]) 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Riverine Floods 0.01 0.01 0.01 0.01 0.01 
PORTS 0.09 0.09 0.08 0.06 0.04 

Total DCS Benefits 0.11 0.10 0.09 0.07 0.05 
 

Note: This assessment did not attempt a comprehensive valuation of the information carried by the GOES 
DCS. We felt that determining the total value of the service was beyond our scope of work and that the 
GOES-R contribution is for the communication services and their hemispherical coverage that make the 
other services possible. 

No one should conclude that the values contained herein reflect the total value of the various services that 
are relayed via the DCS UPS. 

14.5 Discussion—Key Uncertainties and Recommended Future Efforts 

The key uncertainties in this analysis are (1) the factor for the percent of “percent dependent on GOES-R 
DCS” (we applied a 50% factor for the current analysis based on input from USACE but suggest further 
research to refine this value) and (2) the “changes attributable to GOES-R” for PORTS (we applied a 10% 
factor for the current analysis based on input from USACE but suggest further research to refine this 
value). 

While much of the analyses here are subjective, we note in particular that the research team is less 
familiar with this benefit area; thus, the use of PORTS information in this benefit area is less clear. 
Therefore, we feel the logic model of attribution of the PORTS benefits should be explored further and 
validated with appropriate subject matter experts. 

For the contributions by the GOES-DCS and the UPS on the GOES-R satellites, although GOES-R is 
providing a relay of near-realtime data, the geographic diversity throughout the hemisphere and the 
unique frequency range that is restricted to meteorological and hydrological use by frequency 
management regulations define a service that is not available commercially. The need for reception from 
the installed base of data collection platforms and the benefits throughout the hemisphere were not 
computed for all countries that benefit from the GOES-DCS system. 

The nation’s seaports support the marine transportation system that transports the products that American 
businesses and residents use every day. As reported in the press, as a result of COVID-19-related supply 
chain issues, there is a considerable backlog of ships awaiting to unload that are anchored offshore. 
Further due diligence may reveal additional contributions of the GOES-DCS-enabled PORTS in the 
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management of marine traffic as seaport managers work off this backlog of awaiting ships. Examination 
of data statistics from the DOT Maritime Administration [USDOT 2022] may be warranted in future 
work. 

As noted in the benefit analysis section, this assessment has not included other non-flood, non-PORTS 
usage of the GOES-DCS system, which are also supported via the GOES-R UPS communications relay. 
Some of those other uses are monitoring of fire weather conditions from remote platforms, protecting the 
lives of wildland firefighters, and enabling management of the firefighting strategies. Although this is not 
a flooding and hydrology topic, further work in this area could contribute to other benefit areas of this 
study. 
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15. Climate Policy 

15.1 Summary 

To estimate benefits of GOES-R related to climate policy, we assumed that information from GOES-R 
contributes to the understanding of climate change and thus supports decisionmaking with respect to 
mitigating and adapting to those changes. Building on existing information resources, we implemented 
the following steps to derive an annual benefit estimate: 

• We assumed the potential value of GOES-R is in informing policy actions to mitigate and adapt 
to climate change 

• Obtained 2018 GDP [BEA 2022B] ($20,527.2B) and converted to 2020$  

• Applied information from Tol [Tol 2019] on climate economics, including impacts and policy, 
indicating on average a 1.3% decrease in income with a 2.5-degree global temperature increase 

• Assumed that 10% of climate impacts can be mitigated with policy. (Note we feel this is a key 
unknown parameter.) 

• Assumed 1% of climate policy information comes from GOES-R. (Note we feel this is a key 
unknown parameter.) 

This provided us with a baseline year annual benefit from GOES-R in 2018 of $2.7M in informing 
climate policy. We then aggregated these over the lifetime of the project, accounting for increases in 
wealth, population, and weather variability (using a baseline discount rate of 1.185%). The baseline 
estimate is a present value benefit of $8.10B (in 2020$). 

15.2 Introduction to Application Area 

Numerical forecasting of weather is commonly discussed by meteorologists, and numerical weather 
prediction (NWP) is an essential tool for operational weather forecasters. Weather forecasting for up to 
approximately fourteen days can often be determined after using the NWP model outputs, with data from 
many types of meteorological or environmental satellites and other (non-satellite) observational data used 
for model initial conditions. Any forecast beyond two weeks may be considered a climate prediction. 

However, climate modeling and forecasting differ as follows: 

“Climate modeling, in one sense of the word, is simply an extension of weather forecasting, but 
over a very long-time scale. A climate model would predict how average conditions will change 
in a region over the coming decades” [Harper 2018].  

Climate models serve a very different purpose than those for short-term weather forecasting. Climate also 
falls into a separate group of MSAs from the WRN MSAs (as shown in Figure 43) and we treat it 
separately in this report. 
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Figure 43.  NOAA MSAs related to climate and climate benefit area  

(Note: OAR = NOAA Office of Oceanic and Atmospheric Research). 

According to the MIT Joint Program on the Science and Policy of Global Change, “Today’s climate 
challenge requires policies designed to reduce greenhouse gas emissions and air pollution, and to prepare 
populations and infrastructure for the impacts of climate change through adaptation” [MIT 2022]. 
Furthermore, the independent, nonprofit research institution, Resources for the Future (RFF), states: 
“Federal climate policy is the set of actions taken by the US federal government to address and mitigate 
the effects of climate change. Climate policy includes policies to mitigate climate change (reducing 
greenhouse gas emissions and removing greenhouse gases from the atmosphere, so that the climate does 
not change as much or as quickly); and to adapt to climate change (helping communities and businesses 
to build resilience and avoid the worst effects of warmer temperatures, extreme weather, and other 
impacts)” [RFF 2022]. 

Climate policy is part of the larger environmental policy. “Environmental policy in the United States 
involves governmental actions at the federal, state, and local level to protect the environment and 
conserve natural resources. Environmental protection is balanced with other public policy concerns, such 
as economic growth, affordable energy, and the rights of businesses and individuals. Debates over state 
and federal environmental policies often involve discussions of the trade-offs associated with 
environmental laws. Environmental policy can include laws and policies addressing water and air 
pollution, chemical and oil spills, smog, drinking water quality, land conservation and management, and 
wildlife protection, such as the protection of endangered species” [Ballotpedia 2022]. 

The climatic data records (CDRs) collected from the GOES-R series (and other environmental satellite 
systems) play a vital role in helping provide a basis for climate policy, and not just in the U.S., but also in 
other countries around the world. 

15.3 Inputs from TPIO-Derived from NOSIA II Data 

None. There are no such data available from the NOSIA II study/database. 

15.4 Benefit Assessment 

Climate change is considered by many to be the largest environmental, social, and economic threat to 
humanity. As Kumar et al. [Kumar et al 2021] stated “Climate change has given rise to many existential 
threats, including a rise in global temperatures, melting of glaciers and polar ice caps, increment in sea 
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level, loss of biodiversity, extreme weather events, and an outbreak of uncountable diseases” [Ibid, p.1]37 
Having a long-term set of climate data is key to understating climate and potential climate change and to 
informing policy to mitigate and adapt to climate impacts. As noted in the NRC report, Options to Ensure 
the Climate Record from the NPOESS and GOES-R Spacecraft, “The value of sounding from GEO, 
however, goes beyond maintenance of a long-term record. The ability to sense water vapor in the 
atmosphere is crucial for monitoring and predicting hazardous weather conditions”[NRC 2008, p.35]  
Further, as noted by Hsiang et al., “Estimates of climate change damage are central to the design of 
climate policies” [Hsiang et al. 2017, p.1].  

To evaluate the potential contribution of data from GOES-R in informing climate policy, we provide 
subjective estimates of the contribution of GOES-R to the climate record and then of how the climate 
record contributes to climate policy. An underlying assumption is that better climate data can reduce 
potential uncertainty in forming climate policy and reduce the costs of climate impacts. We use 
information from a literature review by Tol [Tol 2019] in which he conducts an analysis of climate 
economics, including impacts and policy. Tol’s review of 27 published studies of the economic impacts 
of climate change indicates on average a 1.3% decrease in income with a 2.5-degree (centigrade) increase 
in global temperature. We applied this 1.3% impact to GDP projections for the United States as climate 
impacts through 2040, noting that the more negative impacts may be further in the future.  

We obtained 2018 GDP of $20,527.2B [BEA 2022]. We then adjusted this value to 2020$ of 20,780.4B. 
Based on Tol [Tol 2019], we assumed that the impact of climate change is a reduction in GDP of 1.30% 
or $270.15B. Assuming that the potential value of GOES-R is in informing policy actions to mitigate and 
adapt to climate change, we first assumed that 10% of climate impacts could be mitigated with policy 
based on climate information. Of this, we then assumed that 1% of climate policy information comes 
from GOES-R. This generated a baseline benefit estimate of $270.15M (2020$). We show these 
calculations in Table 34. 

Table 34.  Economic Benefits of GOES-R Contribution to Climate Policy 

Analysis Factors Factor Value 
U.S. GDP 2018  n/a $20,527,200,000,000  

CPI 2018 255.66 n/a  
CPI 2020 258.81 n/a  

2018 GDP adjusted to 2020$ 1.012336842 $20,780,440,821,882  
Climate impact—reduction in GDP 1.30% $270,145,730,684  
Avoidable with policy 10.00% $27,014,573,068  
Annual Benefit of Policy information from GOES-R (2020$) 1.00% $270,145,731  
 

 

As with other benefit areas, we assumed changes in weather variability would exacerbate impacts and 
factored this in as an annual increase in costs of 1.5%. We further assumed population growth would 
increase impacts by 0.572% annually and per capita income growth would compound the value of 
benefits by 1.469%. We derived aggregated present value benefit estimates using the five applicable rates 

 
37 See also https://climate.mit.edu/ask-mit/why-do-some-people-call-climate-change-existential-threat. Accessed June 15, 2022. 

https://climate.mit.edu/ask-mit/why-do-some-people-call-climate-change-existential-threat
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of discount as shown in Table 35 in billions of 2020$. Our aggregated baseline benefit estimate is $8.10B 
(2020$).  

Table 35.  Present Value Estimates of GOES-R Contribution to Climate Policy 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 9.36 9.01 8.10 6.59 4.43 

 

15.5 Discussion—Key Uncertainties and Recommended Future Efforts 

Two key uncertainties in this analysis are:  

1. The assumption that 10% of climate impacts can be mitigated with policy  
2. The assumption that 1% of climate policy information comes from GOES-R  

It is likely there are existing benefit estimates related to the first assumption based on models of policy 
responses. The second assumption is less understood and is a worthwhile point of analysis and discussion. 
In essence, these assumptions are placeholder responses to questions aboutthe role more accurate climate 
information plays in climate policy and how much of that comes from GOES-R (or any other specific 
source). 

Our analysis could build further on the literature on the benefits of climate policy, including alternative 
valuations approaches such as survey-based willingness-to-pay studies that potentially better capture the 
full socioeconomic benefits of reducing climate impacts. For instance, Kotchen et al. [Kotchen et al. 
2013] found that “Based on a survey of 2034 American adults, we find that households are, on average, 
willing to pay between $79 and $89 per year in support of reducing domestic greenhouse-gas (GHG) 
emissions 17% by 2020. Even very conservative estimates yield an average WTP at or above $60 per 
year” [Ibid, p.617]. If aggregated across the entire U.S. population of more than 100 million households, 
this represents significant economic benefits from climate policy implementation.  
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16. Benchmarking 

16.1 Summary Result 

To estimate benefits of GOES-R related to the entire U.S. economy, we applied a top-down method 
developed by World Bank for assessing the total national value of investment in hydro-met services. 
Benchmarking is not an additional benefit area, but a “top-down” calculation that could be compared to 
the order-of-magnitude results in our benefit areas. Rough correlation should improve confidence in the 
values shown in the benefit areas in our study. Building on existing information resources, we 
implemented the following steps to derive an annual benefit estimate: 

• We obtained data on total and sectoral U.S. GDP for 2018 ($20,580.2B)38 [BEA 2022C] 

• We obtained estimate of the variability in U.S. GDP attributable to weather (1.4%) from 
published empirical literature 

• We multiplied the GDP by 1.4% to derive overall annual variability in U.S. GDP due to weather 
($288B) 

• We assumed 5% of this impact can be mitigated, or benefits increased, by 5% for a total benefit 
of weather information of 10% ($28.8B). (Note we feel this is a key uncertain parameter.) 

• We applied a factor of 6.38% as portion of this benefit attributable to GOES-R ($1.84B) (TPIO 
number) 

• We adjusted dollars from 2018$ to 2020$ using the CPI ($1.87B) 

This provided us with a baseline year annual benefit from GOES-R. We then aggregated these over the 
lifetime of the project, accounting for increases in wealth, population, and weather variability (using a 
baseline discount rate of 1.185%). The aggregated baseline estimate is a present value benefit of $45.66B 
(in 2020$). 

16.2 Introduction to Application Area 

WMO [WMO 2015] describes the benchmarking approach as a method for top-down assessment of the 
benefits of National Hydrological and Meteorological Services (NHMS). Benchmarking is not a detailed 
assessment but is useful for “providing order-of-magnitude valuations that help NMHSs justify increasing 
public funds to support their services” [WMO 2015]  

As explained on the Bureau of Economic Analysis (BEA) website of the U.S. Department of Commerce 
(the same federal department in which NOAA and the NWS reside), GDP is “a comprehensive measure 
of U.S. economic activity. GDP measures the value of the final goods and services produced in the United 
States (without double counting the intermediate goods and services used up to produce them). Changes 
in GDP are the most popular indicator of the nation's overall economic health” [BEA 2022B]. GDP is thus 
a measure of the total economic output of the United States across all sectors and states. Total economic 
output is taken as a measure of the total welfare of the population and thus changes in GDP reflect 
changes in welfare. Variability in GDP due to weather variability are measures of the socioeconomic 

 
38 We note that some of the GDP values for the same year may vary slightly depending on when the data was extracted from the 
relevant sources and potential differences in methods or conversions between various sources. Any differences in initial GDP 
estimates are well within any reasonable margin of error in this analysis.  
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impact of weather. Reductions in this variability due to the use of weather information reflect potential 
benefits of this weather information. As explicated in Lazo et al. [Lazo et al 2011], changes in GDP from 
the use of weather information are reflected in the changes in societal welfare on the “production side.” 
According to Lazo et al. [Ibid] (as copied to Appendix D), this provides a conceptual model of these 
impacts. The benchmarking approach is a subjective order-of-magnitude approach to estimating the 
benefits from using weather information to reduce GDP variability.  

16.3 Benefit Assessment 

“The World Bank conducted a series of studies to assess the avoided costs associated with large-
scale modernization of NMHS services in 11 countries in Europe and Central Asia. These studies 
rely on simplified approaches, specifically sector-specific and benchmarking approaches, 
developed by the Bank to compare order-of-magnitude benefits of reducing damages from 
weather-related events to the costs associated with improving met/hydro services” [WMO 2015, 
p. 71].  

The method, as implemented by WMO, is similar to an expert elicitation but, in general, used a single 
expert from the relevant National Meteorological Hydrological Service (NMHS) to provide an impact 
estimate. As stated in the WMO/World Bank/USAID volume describing economic approaches to 
evaluating the value of NMHSs, “The sector-specific method values the economic benefits that would 
accrue in weather-dependent sectors from modernization of NMHS agencies. This method relies on 
available country data and surveys of national experts from NMHS agencies and weather-dependent 
sectors to (a) estimate current sectoral losses from weather events, and (b) determine the potential 
reduction in losses that modernization would achieve” [Ibid, p. 72]. 

The most basic benchmarking approach involves a two-staged tactic. The first stage defines the average 
values of two key parameters. One then applies these to the GDP of the country as an estimate of the 
potential value of improved hydro-meteorological information. The two key parameters are: 

1. The level of annual direct economic losses caused by hydrometeorological hazards as a share 
of GDP 

2. The level of annual prevented losses (i.e., losses that are potentially avoided due to the use of 
improved weather forecasts and warnings) expressed as a percentage of the total losses 
[Tsirkunov et al. 2007] 

Building on this approach in projects for the World Bank, Lazo and colleagues [Lazo 2015][Lazo 
2018][Lazo 2017][Lazo and Quiroga 2018] further developed and implemented the benchmarking 
approach. These developments included using a larger number of experts than implemented in prior 
World Bank studies and including experts from specific sectors under study. 

For the current analysis, we undertook a preliminary benchmarking approach using U.S. economic data 
on sector-specific GDP as shown in Table 36 [BEA 2022C]. This shows the value added by each sector as 
defined by the North American Industry Classification System (NAICS). By definition, this totals to U.S. 
GDP, which is a measure of all economic activity in the country and a primary measure of economic 
wellbeing in the country. 

 

 
 



100 

Table 36.  Implementation of the Benchmarking Approach in the United States—2018 GDP by Sector 

Value Added by Industry [Billions of dollars] Bureau of 
Economic Analysis Release Date: October 29,2019 2018 

($B) 
Percent 
Annual 
Impacts 

Annual 
Impacts 

($B) 

Improved 
Forecasts 

Reduction or 
Increase 

Benefits of 
Forecasts 

($B) 
GOES-R 

Attribution GOES-R 
Benefits 

Agriculture, forestry, fishing, and hunting 166.5 1.40% 2.331 10.00% 0.233 6.38% 0.015 
Mining 346.6 1.40% 4.852 10.00% 0.485 6.38% 0.031 
Utilities 325.9 1.40% 4.563 10.00% 0.456 6.38% 0.029 
Construction 839.1 1.40% 11.747 10.00% 1.175 6.38% 0.075 
Manufacturing 2,321.2 1.40% 32.497 10.00% 3.250 6.38% 0.207 
Wholesale trade 1,212.2 1.40% 16.971 10.00% 1.697 6.38% 0.108 
Retail trade 1,126.9 1.40% 15.777 10.00% 1.578 6.38% 0.101 
Transportation and warehousing 658.1 1.40% 9.213 10.00% 0.921 6.38% 0.059 
Information 1,067.7 1.40% 14.948 10.00% 1.495 6.38% 0.095 
Finance, insurance, real estate, rental, and leasing 4,301.6 1.40% 60.222 10.00% 6.022 6.38% 0.385 
Professional and business services 2,579.4 1.40% 36.112 10.00% 3.611 6.38% 0.231 
Educational services, health care, and social assistance 1,792.5 1.40% 25.095 10.00% 2.510 6.38% 0.160 
Arts, entertainment, recreation, accommodation, and food services 860.6 1.40% 12.048 10.00% 1.205 6.38% 0.077 
Other services, except government 437.2 1.40% 6.121 10.00% 0.612 6.38% 0.039 
Government—Federal, State, and Local 2,544.6 1.40% 35.624 10.00% 3.562 6.38% 0.227 
Gross domestic product 20,580.2 n/a 288.121 n/a 28.812 n/a 1.840 
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From Lazo et al. [Lazo et al 2011], we use twice the coefficient of variation (CoV), or 1.4%, as the 
variation in GDP related to variation in weather (see Figure 44).  This represents both negative impacts 
(decreases in GDP below average) and benefits (increases in GDP above average) without specifying the 
underlying causality. Lazo et al. represents a statistical analysis of the relationship at a high level of 
aggregation. Using twice the CoV from the study means that, for roughly 95% of years, GDP will fall 
within that range that represents impacts from weather on the economy. Figure 44 shows various 
measures from Lazo et al. of the impact of weather variability on the economy. We feel that the 
coefficient of variation represents the most conservative measure of weather impacts (i.e., rather than the 
“percent range” of 3.36%, which is dependent on the range of years included in the analysis and not a 
statistical measure of variability as the CoV is). 

 
Figure 44.  Calculation of coefficient of variation from [Ibid]. 

We multiplied the sector GDP by the 1.4% to derive overall impacts of weather variability in each sector 
to derive the “annual impacts” in each sector. Note that, for the current analysis, we applied the same 
factor to each sector. Future work (possibly based on Lazo et al. [Ibid]) could use different factors for 
different sectors. 

Of the annual impacts, we the assumed that 5% of the negative impact can be mitigated, or benefits 
increased, by 5% for total benefit of weather information of 10%. For the current analysis, these two 
factors (the 1.4% applied to sector value-added and the 5% × 2 applied to the sector impact) are the key 
uncertain parameters. Combining these two adjustments provided a “benefits of forecasts” value. We then 
multiplied this by the percent of forecasts contributed to by GOES-R for public forecasts (6.38%), as 
estimated by TPIO analysis. We felt that public forecasts provided the broadest measure of GOES-R 
contributions across all activity that may be applicable for the entire U.S. economy. We summed these 
“GOES-R benefits” across all sectors to derive our baseline value of the benefits of GOES-R across the 
entire U.S. economy in 2018$ based on 2018 GDP [BEA 2022]. We then adjusted these for inflation to 
2020$ (i.e., impacts in the year 2018 measured in 2020$). 

Table 37 summarizes these benchmarking calculations more succinctly as we used a single factor for the 
“Percent Annual Impacts” (1.4%). If these were varied sector by sector, we would have to use something 
similar to Table 36 to show sector-level calculations. As shown in Table 37, our baseline annual benefit 
from GOES-R, based on this approach across the entire U.S. economy, is a little over $1.87B. 
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Table 37.  Benchmarking Calculations 

Analysis Factors Factor Value 
Gross domestic product (2018$B)  n/a 20,580.20 
Percent annual impacts 1.40%  n/a 
Annual impacts (2018$B)  n/a 288.120 
Improved forecasts reduction or increase 10% n/a  
Benefits of forecasts (2018$B)  n/a 28.810 
GOES-R attribution 6.38% n/a  
GOES-R benefits (2018$B)  n/a 1.840 

2018 CPI 251.107 n/a  
2020 CPI 255.657 n/a 

CPI adjustment factor 1.018 n/a 
GOES-R attributable benefits in 2020$  n/a 1,872,987,740 
 

As with other benefit areas, we assumed changes in weather variability would exacerbate economic 
impacts and factored this in as an annual increase of 1.5%. We further assumed population growth would 
increase by 0.572% annually and per capita income growth would compound the value of benefits by 
1.469% annually. We derived aggregated present value benefit estimates using the five applicable rates of 
discount as shown in Table 38 with our aggregated baseline estimate of $45.66B (2020$).  

Table 38.  Benchmarking Estimates of GOES-R Contribution to GDP 

Discount Rate 0.0% 0.300% 1.185% 3.000% 7.000% 
Billions (2020$) 64.87 56.14 45.66 45.66 30.73 

 

16.4 Discussion—Key Uncertainties and Recommended Future Efforts 

As we noted previously, the key uncertainties in this analysis are the factor for the “percent annual 
impacts,” and how much improved forecasts reduce or increase these impacts. We applied factors of 1.4% 
and 10%, respectively, to these for the current analysis but suggest further research to refine these values. 

The results of our benchmarking analysis are the same order of magnitude as those values for public 
forecasting. We feel that further analysis is required to utilize the benchmarking technique to its full 
potential. As the parameters used in the analysis are preliminary, this represents an order-of-magnitude 
assessment for which we recommend further work (e.g., an expert elicitation of the appropriate experts) to 
better implement this method. 
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17. Summary, Discussion, Key Uncertainties, Lessons Learned,  
and Recommended Future Efforts 

17.1 Summary 

Our phase 2 work focused on multiple different potential benefit areas in the value chain. Figure 45 
repeats the hurricane value chain model from the phase 1 study. Similar value chains could be developed 
for each benefit area to better characterize the value creation process; identify key actors, decisions, and 
information pathways; explicate and assess the logic model of our analysis; and highlight key 
uncertainties and assumptions in each benefit assessment.  

 
Figure 45.  GOES-R hurricane information value chain model [Lubar et al. 2021]. 

Table 39 shows all the benefit areas, including the phase 1 hurricane analysis, the impact evaluated in 
terms of how impacts were monetized, the baseline annual benefit estimates in 2020$, and the aggregated 
present value of benefits (also in 2020$ using the 1.185% rate of discount).  

We note again that we cannot simply sum all the evaluated benefit areas to derive a total value of GOES-
R. Some of the benefit areas may overlap with other areas (e.g., air quality and general public forecasts 
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may overlap as may winter weather and aviation). In addition, some evaluation approaches are 
specifically designed to encompass some or all the other areas—specifically, the benchmarking approach 
attempts to cover all potential areas economy wide and thus explicitly does include all the other benefit 
areas. 

For extreme weather, though, we feel that the different weather event types and the types of impact 
evaluated (e.g., WTP versus fatalities versus damage reduction) do allow us to sum across all the extreme 
weather events as shown.  

Table 39.  GOES-R Benefit Estimates for Various Benefit Areas (Baseline Parameters with Discount Rate 1.185%) 

  Impact Evaluated 
Baseline Annual 

Benefits  
Millions 2020$ 

Present Value of 
Benefits  

Billions 2020$ 
Extreme Weather  n/a n/a n/a 

Hurricanes (Phase 1) Willingness to Pay (WTP) 312.16 8.36 

Wildfires Reduced costs with early detection 316.57 9.68 

Winter Storms Reduced "billion-dollar"  
disasters 33.26 0.84 

Flash flooding -- riverine flood 
warnings Reduced fatalities 18.44 0.55 

Flash flooding -- riverine flood 
warnings Reduced damages 3.82 0.11 

Severe thunderstorms and 
tornadoes Reduced fatalities 64.60 1.94 

Drought Reduced "billion-dollar" disasters 60.70 1.82 

n/a Total Extreme Weather 809.55 23.30 
General public forecasts and 
warnings 

WTP 875.26 26.24 
Air Quality Reduced fatalities 33.29 1.00 
Aviation Weather Reduced weather-related delays 470.34 19.67 
Unique Payload Services  n/a n/a n/a 

Search and  Rescue (SAR) Reduced fatalities 44.34 1.30 

DCS data communication  n/a n/a n/a 
Riverine flooding Reduced flood damages 0.42 0.10 

PORTS Lower property  losses and oil pollution 
remediation costs / reduced fatalities 

2.64 0.08 

Climate Policy Reduced climate impacts 270.15 8.10 

Benchmarking 
Reduced negative / increased positive 
impacts on GDP 1,872.99 45.66 

 

We feel that the three broadest benefit approaches of “extreme weather,” “general public forecasts and 
warnings,” and “benchmarking” provide order-of-magnitude indications of the total value of GOES-R 
socioeconomic benefits. The total estimates for these aggregated benefit areas of $23.3B, $26.4B, and 
$45.66B, respectively, suggest a total benefit of GOES-R in the $20B to $50B range. In presenting this 
aggregate benefit range, we note strongly that (1) the results reported here should be considered 
“preliminary” in that they would benefit from further review to ascertain their validity and reliability, 
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(2) these results have significant degrees of uncertainty due to limited information to quantify each step in 
the “value chain,” and (3) some of the benefit areas presented here are “strawmen” intended to suggest 
potentially important or interesting benefit areas for future analysis.  

Table 40 provides the aggregated benefit estimates for each of the five discount rates assessed.  

Table 40.  Phase 2 Baseline Benefit Area Benefits Estimates (Billions 2020$) 

BENEFIT AREAS EVALUATED Discount 
Rate 

0.000% Discount Rate 
0.300% 

Discount 
Rate 

1.185% 
Discount 

Rate 
3.000% Discount Rate 

7.000% 
EXTREME WEATHER n/a  n/a n/a n/a n/a 

HURRICANES (Phase 1) 9.61 9.27 8.36 6.85 4.68 
WIDFIRES 10.96 10.62 9.68 8.11 5.82 
WINTER STORMS 0.96 0.93 0.84 0.69 0.48 
FLASH FLOODING -- FATALITIES 0.64 0.62 0.55 0.45 0.30 
FLASH FLOODING -- DAMAGES 0.13 0.13 0.11 0.09 0.06 
SEVERE THUNDERSTORMS & TORNADOES 2.24 2.16 1.94 1.58 1.06 
DROUGHT 2.10 2.03 1.82 1.48 1.00 

TOTAL EXTREME WEATHER 26.65 25.74 23.30 19.25 13.40 
PUBLIC FORECASTS 30.31 29.20 26.24 21.34 14.36 
AIR QUALITY 1.15 1.11 1.00 0.81 0.55 
AVIATION DELAYS 23.02 22.11 19.67 15.68 10.09 
DCS/UPS  n/a n/a n/a n/a n/a 

SEARCH AND RESCUE 1.50 1.44 1.30 1.06 0.72 
DCS -- RIVIEINE FLOOD 0.01 0.01 0.01 0.01 0.01 
DCS -- PORTS 0.09 0.09 0.08 0.06 0.04 

TOTAL DCS 1.60 1.54 1.39 1.13 0.77 
CLIMATE PICY 9.36 9.01 8.10 6.59 4.43 
BENCHMARKING 64.87 55.14 45.66 45.66 30.73 
 

17.2 Discussion 

We felt that in light of our phase 1 hurricane products benefits estimate of $8.4B [Lubar et al. 2021] 
based on the four hurricane products/attributes evaluated there, it was reasonable to predict that the 
present value of GOES-R economic benefits value for all forecasts and products (e.g., for air quality, 
severe thunderstorms and tornadoes, winter storms, flooding, wildfires, aviation weather, and even every-
day, non-severe weather forecasts) to which the GOES-R series contributes data over its lifetime would 
be significantly larger. Our phase 2 analysis as shown in Figure 46 supports this. 

It is important to note that most of the benefits areas we assessed in this study were in reference to the 
contributions of the GOES-R ABI to various NWS products and services. What we did not assess were 
the contributions of the other GOES-R instruments nor the possible synergies between GOES-R 
instruments. One outstanding example is the powerful capabilities of the ABI and GLM used together to 
provide a substitute weather radar capability for intermountain locations where the land-based radars are 
blocked and for oceanic locations that are out of reach of land-based weather radars. Although we did no 
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specific economic valuations on the GLM in this report, we did include general qualitative assessments 
for the GLM within applicable benefit area chapters. 

We note that the Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors 
(EXIS), Space Environment In-Situ Suite (SEISS), Compact Coronagraph (CCOR)39 and Magnetometer 
(MAG) instruments have made or will have contributions that we did not factor into our current efforts. 

Also, the UPS are communications transponder payloads on GOES-R series satellites that provide 
communications relay services in addition to the primary GOES mission data.  Although both the SAR 
section (section 13) included support of the SAR transponder to global search and rescue efforts, and the 
flooding section (section 14) included support of the GOES DCS of in situ sensors using the Data 
Collection Platform Report (DCPR), both of which assessed the capabilities of the GOES-R UPS, there 
are additional contributions that were not included in this phase 2 effort. There are many domestic and 
international organizations who utilize the broadcasts from the UPS to contribute to their forecasting and 
warning products and services. We have not considered the socioeconomic value for these uses unless 
specifically noted. Such an additional payload providing added UPS capabilities is the GRB transmission 
for which Figure 46 gives just one example.  

The January 15, 2022, eruption of Hunga Tonga, a volcano in the Pacific Ocean region near the island nation of 
Tonga, resulted in a record-setting ash cloud that exceeded the previous record height of the volcanic plume 
recorded by meteorological satellite observation. This type of event imagery would not have normally been provided 
to National Weather Forecast offices with the highest resolution possible, because some of this type of data from 
ocean areas are not usually sent via communication satellites to the Advanced Weather Information Processor 
(AWIPS) due to bandwidth limitations on the commercial transponder used to broadcast information to all National 
Weather Service offices. However, the full resolution imagery is available via the UPS’s GOES ReBroadcast (GRB) 
transmission from GOES-R satellites. The staff of the Cooperative Institute for Meteorological Satellite Studies 
(CIMSS) at the University of Wisconsin/Madison noticed the event and inserted the higher-resolution data as 
received by this non-Federal receiving site into the AWIPS data stream.  The 10-minute GOES-17 Visible and 
Infrared images during the first 30 minutes (only 20 minutes after eruption onset) were available for meteorological 
examination and tsunami forecast assessments. 

GOES-17 also directed a Mesoscale Domain Sector over the southern Pacific Ocean, to provide imagery of the 
volcanic event at 1-minute intervals. This GOES-R capability was not evaluated in this study. 

 

 
39 CCOR on GOES-U spacecraft only 
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Figure 46.  Hunga Tonga Volcano (NOAA/CIMSS). 
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17.3 Strengths and Challenges 

It was out of the scope for our study to consider all the possible NOAA MSAs. But much like the NOAA 
fleet study [Abt 2018]that used a small number of marine and oceanic product values to support the whole 
NOAA fleet of ships, one of our goals was to monetize the socioeconomic benefits of improved GOES-R 
data sufficiently to suggest that the benefits exceed the overall cost of the GOES-R system over its 
lifetime. 

Strengths of our study: 

• In phase 1, we developed a rigorous result using specific and directly applicable WTP cost data 
from several existent studies coupled with estimates of the GOES-R percentage contributions to 
the same forecast products elicited from NWS experts. 

The January 15, 2022, eruption of Hunga Tonga, a volcano in the Pacific Ocean region near the island nation 
of Tonga, resulted in a record-setting ash cloud that exceeded the previous record height of the volcanic 
plume recorded by meteorological satellite observation. 
This type of event imagery would not have normally been provided to National Weather Forecast offices with 
the highest resolution possible, because some of this type of data from ocean areas are not usually sent via 
communication satellites to the Advanced Weather Information Processor (AWIPS) due to bandwidth 
limitations on the commercial transponder used to broadcast information to all National Weather Service 
offices. 
However, the full resolution imagery is available via the UPS’s GOES ReBroadcast (GRB) transmission from 
GOES-R satellites. The staff of the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the 
University of Wisconsin/Madison noticed the event and inserted the higher-resolution data as received by this 
non-Federal receiving site into the AWIPS data stream.  The 10-minute GOES-17 Visible and Infrared 
images during the first 30 minutes (only 20 minutes after eruption onset) were available for meteorological 
examination and tsunami forecast assessments. 

 
GOES-17 also directed a Mesoscale Domain Sector over the southern Pacific Ocean, to provide imagery of 
the volcanic event at 1-minute intervals. This GOES-R capability was not evaluated in this study. 
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• In phase 2, we were able to take advantage of all the extensive elicitations of NWS personnel 
accomplished by the NESDIS TPIO NOSIA II team to assess GOES-R impacts and importance 
percentages for the various benefit areas. 

• In this phase, we implemented the World Bank/WMO benchmarking method to perform a top-
down assessment of the total national value of investment in hydro-met services as an order-of-
magnitude check on our general public forecasts and warnings assessments. This provided an 
order-of-magnitude validation of our general public forecasts and warnings assessment results 
that we had sought. 

• Our identification of useful economic methods, concepts, and areas for future studies 

Challenges of our study: 

• The lack of specific benefit value data from possible previous studies that we could transfer in our 
calculations for GOES-R benefits monetization 

• Lacking such extant benefit value data, we had to make several initial subjective judgements for 
key parameters (educated heuristic estimations), which represent the greatest uncertainties (key 
uncertainty parameters) of several of our Phase 2 benefit areas, such as: 

- Percent of event impacts avoided because of weather observation, modeling, and forecasting 
early detection, 

- Percent of storm impacts (e.g., damages and/or fatalities) that are or could be mitigated, 

- Percent of various impact reductions attributable to weather information, 

- Percent reduction in lives lost which is attributable to improved weather information, 

- Percent value of forecasts from observations based on prior research, 

- Specifically for the Benchmarking approach, assumed a percent of overall annual variability 
in U.S. GDP due to weather impact that can be mitigated, or benefits increased, by another 
estimated percent, for a total benefit of weather information of twice these to percentages. 

Each of these “challenges” suggest areas where ongoing or future research could improve, refine, change, 
or validate our (often subjective) estimates.  

17.4 Further and/or Follow-On Analysis/Studies 

We hope that our study assists in informing future environmental satellite benefits studies and analyses.  
For example, ongoing NOAA value studies for the GeoXO program have made the value connection of 
user information to potential benefit areas in society-developing values chains as depicted in Figure 47. 
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Figure 47.  GeoXO connections to NOAA products to potential benefit areas [Lindsey et al. 2022]. 

It is promising that similar study efforts can use, and are using, similar value-chain and societal-benefits 
techniques as we employed in our study. We believe these kinds of efforts, when undertaken with 
appropriate resources and time, will produce more valid and reliable economic value assessments, 
especially when concentrated in particular individual benefits areas. 

17.5 Lessons Learned 

Finally, we address our “lessons learned” from both Phase 1 and Phase 2 as guidance to ongoing and 
future work: 

• We found the value chain concept to be very useful to (1) improve and integrate communication 
across research disciplines, (2) inform research subjects about the topic and relevance of different 
participants in the project, and (3) ensure the validity and reliability of the economic assessment 
by demonstrating the connection of GOES-R observations to outcomes and economic values held 
by members of the general public. 

• The combination of team members (a meteorologist, an engineer, and an economist) allowed us 
to better characterize the information process throughout the value chain. Any benefit assessment 
requires the requisite expertise at each step of the value chain to provide and assess the logic 
model and ensure analysis quality.  

- Asking meteorologists to assign economic values to products does not work, but they can 
characterize improvements in data and information for forecasting. 

- Asking economists to assign information improvement percentages to weather forecasts does 
not work but they can characterize the value of improvements in forecast information. 
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• Our approach required both identifying where GOES-R makes the greatest contributions, 
identifying available end-user economic benefit information, and filling in the process between 
these as there were neither the time nor resources to gather extensive primary data. 

• A lack of readily available or identified primary economic studies in certain areas of interest to 
use for benefits transfer limited the implementation of our Phase 2 approach, thus indicating the 
need for well-chosen primary and focused studies to support future benefits assessments. 

• The methods implemented in the Phase 1 Pathfinder—a combination of the value chain approach, 
modified expert elicitation, and benefits transfer—can be judiciously applied to focus on 
additional information processes to develop order-of-magnitude estimates of other benefit areas. 

17.6 Future Considerations and Efforts 

Based upon our experiences with executing this study, we submit the following ideas for future 
considerations and efforts: 

• Any effort to assess all GOES-R-related product values would be a considerably larger task (in 
time, manpower and funding), than the effort and resources available for this study. As with any 
economic analysis, the resources to be applied to the analysis should be commensurate with the 
needs for economic analysis. 

• It is critical that NOAA not reinvent the wheel with every new socioeconomic benefits study. We 
hope this effort increases the socioeconomic literacy of the participants on the GOES-R technical 
side and the understanding of the GOES-R program and products on the economics side that can 
better support future studies. 

- As noted by a reviewer of our Phase 1 report [Lubar et al. 2021]:  

“Practically speaking, there may never be a need to attempt a full assessment of GOES-R 
benefits. Once the lower-bound estimates for several benefit classes exceeds the cost by a 
sufficient margin, the economic case for this investment will be solid. Except, of course, that 
this analysis looks at investments in GOES-R in isolation from alternative investments that 
could generate additional net benefits (e.g., other satellite investments that could achieve 
similar levels of performance or even investments in risk communication, which could 
potentially have a greater effect on societal outcomes than improved forecasting).”  

- We agree that the appropriate use of benefit analysis should evaluate all alternatives and the 
choice made between all viable options. 

• We feel it is worth pursuing a broader critique and evaluation of the study and consider 
submitting its results to peer review. This would permit the project sponsors to obtain external 
input on the reliability and validity of the study process—the methods and results. It would also 
put this information “in the literature” which can provide a stronger foundation for any 
forthcoming studies of the socioeconomic benefits of observational systems. 

• We note that as of this writing (December 2022) a manuscript is under peer review at The 
Bulletin of the American Meteorological Society (BAMS). We will continue to develop, evaluate, 
and improve this Phase 2 work as guided by the GOES-R Program Office. We will also consider 
developing a manuscript on the Phase 2 work or some portion thereof for future submission to a 
peer review journal.  
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• We hope that our study will better inform the future GeoXO efforts on the benefits and values of 
capabilities potentially contributing to the NWS WRN MSAs covered herein. In fact, the work 
associated with the GOES-R ABI is directly relevant to GeoXO, not accounting for the increased 
resolution of the GeoXO-era instrument. 
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18. Acronyms 

ABI Advanced Baseline Imager  

ACG allision, collision, and grounding 

ADP Aerosol Detection Product 

AGU  American Geophysical Union 

AHPS Advanced Hydrologic Prediction Service 

AMS American Meteorological Society 

AOD Aerosol Optical Depth 

APO FAA Office of Aviation Policy and Plans 

AQI air quality index 

ASPB Advanced Satellite Products Branch 

ATAG Air Transport Action Group 

ATS Applications Technology Satellite 

AVHRR Advanced Very High Resolution Radiometer 

AWC Aviation Weather Center  

AWIPS Advanced Weather Information Processor 

B billion 

BAMS Bulletin of the American Meteorological Society 

BEA Bureau of Economic Analysis 

BLS Bureau of Labor Statistics 

BTS Bureau of Transportation Statistics 

CAGR compound annual growth rate  

CAT Clear air turbulence 

CCOR Compact Coronagraph (GOES-R Instrument on GOES-U only) 

CDO Convective Diagnostic Oceanic 

CDR Climatic Data Record 

CRS  Congressional Research Service  

CECW-CE U.S. Army Corps of Engineers Chief of Engineering and Construction Division, 
Civil Works Directorate 

CI confidence interval 

CIMSS Cooperative Institute for Meteorological Satellite Studies 

CLI Climate Policy 

CONUS Continental United States 

COPD Chronic Obstructive Pulmonary Disease  
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COSPAS Cosmicheskaya Sistyema Poiska Avariynich Sudov 

COVID-19 Coronavirus Disease 2019 

CoV Coefficient of variation  

CPC NWS Climate Prediction Center 

CPI Consumer Price Index 

CRS Congressional Research Service 

CSG (Aerospace) Civil Systems Group 

DCP data collection platform 

DCPR Data Collection Platform Report 

DCS Data Collection System 

DOC Department of Commerce 

DOD Department of Defense 

DOI Department of the Interior 

DOT Department of Transportation 

DR Discount Rate 

EDDI Evaporative Demand Drought Index 

EM-DAT Center for Reseach on the Epidemiology of Disasters International Disaster 
Database 

EMWIN Emergency Managers Weather Information Network 

ENSO El Niño-Southern Oscillation 

EO emergency operations 

EO NASA Earth Observatiory 

EPA Environmental Protection Agency 

EROS Earth Resources Observation and Science 

ESI Evaporative Stress Index 

ET evapotranspiration 

EXIS X-Ray Irradiance Sensors (GOES-R Instruments) 

EUR Euro 

FAA Federal Aviation Administration 

FDC Fire Detection / Hot Spot Characterization 

FLAMBE Fire Locating and Modeling of Burning Emissions 

GDP Gross Domestic Product 

GEO Geostationary (or Geostationary orbit) 

GeoXO Geostationary Extended Observations program 

GHG Green House Gas 
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GIS Geographic Information System 

GLM Geostationary Lightning Mapper 

GOES N-O-P Geostationary Operational Environmental Satellite – N, O, and P Series 

GOES-R Geostationary Operational Environmental Satellite – R Series 

GOES-East (16)  Geostationary Operational Environmental Satellite – 16 (aka., GOES-East and 
GOES-R) 

GRB GOES ReBroadcast 

GSP Generalized System of Preferences 

HA Hyaluronan 

HH household 

HMS Hazard Mapping System 

HPRCC High Plains Regional Climate Center 

HRIT High-Rate information Transmission 

IDSS Impact-based Decision Support Services  

IFR Instrument Flight Rules 

III Insurance Information Institute  

IR infrared  

JPSS  Joint Polar Satellite System 

K Kelvin  

K Given Cost for Capital 

km kilometer 

LEO low Earth orbit 

LWIR long-wave infrared 

M million 

MAG Magnetometer (GOES-R Instrument) 

MD Mesoscale Discussion 

MEO medium Earth orbit 

MIR mid-wave infrared 

MIT Massachusetts Institute of Technology 

MSA Mission Service Area 

NAICS North American Industry Classification System 

NAQFC National Air Quality Forecast Capability 

NASS National Agricultural Statistics Service 

NCEI National Centers for Environmental Information 

NCEP National Centers for Environmental Prediction 
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NDFD National Digital Forecast Database 

NDGD National Digital Guidance Database 

NDMC National Drought Mitigation Center  

NDVI Normalized Difference Vegetation Index  

NESDIS National Environmental Satellite Data and Information Services 

NESIS Northeast Snowfall Impact Scale  

NFTA Niagara Frontier Transportation Authority 

NHMS National Hydrological and Meteorological Services 

NIDIS National Integrated Drought Information System 

NGSO Non-geostationary satellite systems 

NLSC National Lightning Safety Council 

NMHS National Meteorological Hydrological Service  

NOAA National Oceanic and Atmospheric Administration 

NOS National Ocean Service 

NOSIA NOAA Observation Systems Integrated Analysis 

NPOESS National Polar Orbiting Environmental Satellite System 

NPS National Park Service  

NRC National Research Council 

NWP numerical weather prediction 

NWS National Weather Service 

OAR NOAA Office of Oceanic and Atmospheric Research 

OLS ordinary least squares 

OMB White House Office of Management and Budget  

OPPA NESDIS Office of Projects, Planning, and Analysis 

PM2.5 Particulate Matter that is 2.5 microns or less in width 

PLB Personal Locator Beacon 

PM particulate matter 

PORTS® Physical Oceanographic Real-Time System® 

RAL UCAR Research Applications Lab 

RC-MTS Resilient Coasts - Marine Transportation 

RFF Resources for the Future 

RGB Red Green Blue 

RTMA Real-Time Mesoscale Analysis 

SARSAT Search and Rescue Satellite-Aided Tracking  
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SAS Statistical Analysis System 

SatMOC Satellite Meteorology, Oceanography and Climate 

SFO San Francisco International Airport 

SIGMET NWS Significant Meteorological Advisory 

SIGWX NWS Significant Weather Advisory 

SEISS Space Environment In-Situ Suite (GOES-R Instrument) 

SSEC Space Science and Engineering Center (Univ. of Wisconsin-Madison) 

SMS Synchronous Meteorological Satellite 

SMS Short Message Service 

SNPP Suomi National Polar-orbiting Partnership 

SPC NWS Storm Prediction Center 

STAR NESDIS Center for Satellite Applications & Research 

SUVI Solar Ultraviolet Imager (GOES-R Instrument) 

TAF Terminal Aerodrome Forecast 

TOWR-S Total Operational Weather Readiness - Satellites 

TPIO Technology, Planning and Integration for Observation office 

TTX tabletop exercise 

UCAR University Corporation for Atmospherice Research 

UHF Ultra-High Frequency 

UPS Unique Payload Services  

U.S. United States 

USACE U.S. Army Corp of Engineers 

USAID United States Agency for International Development 

USDA United States Department of Agriculture 

USDOT U.S. Department of Transportation 

USFS U.S. Forest Service 

USGS United States Geological Survey 

VegDRI Vegetation Drought Response Index 

VIIRS Visible Infrared Imaging Radiometer Suite 

vis/VIS visible 

VSL Value of Statistical Life 

WAOB World Agricultural Outlook Board 

WASDE World Agricultural Supply and Demands Estimates 

WF-ABBA Wildfire Automated Biomass Burning Algorithm 
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WFO Weather Forecast Office 

WMO World Meteorological Organization 

WRN Weather Ready Nation 

WTP Willingness to pay 
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Appendix A. Population Projections and Annual Growth Rates 

Table 41.  Population Projections and Annual Growth Rates (Census Bureau) 

Year Population Annual Growth Rate % 
2017 324,985,539 0.63000 
2018 326,687,501 0.52000 
2019 328,239,523 0.48000 
2020 332,639,102 0.71091 
2021 334,998,398 0.70192 
2022 337,341,954 0.69169 
2023 339,665,118 0.68030 
2024 341,963,408 0.66809 
2025 344,234,377 0.65621 
2026 346,481,182 0.64372 
2027 348,695,115 0.62961 
2028 350,872,007 0.61463 
2029 353,008,224 0.59896 
2030 355,100,730 0.58281 
2031 357,147,329 0.56643 
2032 359,146,709 0.55009 
2033 361,098,559 0.53402 
2034 363,003,410 0.51840 
2035 364,862,145 0.50333 
2036 366,676,312 0.48895 
2037 368,447,857 0.47529 
2038 370,178,704 0.46240 
2039 371,871,238 0.45033 
2040 373,527,973 0.43913 

Average n/a 0.57249 
Source: https://www.census.gov/data-
tools/demo/idb/#/table?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2022&menu=tableViz&FIPS=US&TABLE_RANGE=2017,
2040&TABLE_YEARS=2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,
2036,2037,2038,2039,2040&TABLE_USE_RANGE=Y&TABLE_USE_YEARS=N&TABLE_STEP=1. Accessed January 18, 2022. 

 

https://www.census.gov/data-tools/demo/idb/%23/table?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2022&menu=tableViz&FIPS=US&TABLE_RANGE=2017,2040&TABLE_YEARS=2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040&TABLE_USE_RANGE=Y&TABLE_USE_YEARS=N&TABLE_STEP=1
https://www.census.gov/data-tools/demo/idb/%23/table?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2022&menu=tableViz&FIPS=US&TABLE_RANGE=2017,2040&TABLE_YEARS=2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040&TABLE_USE_RANGE=Y&TABLE_USE_YEARS=N&TABLE_STEP=1
https://www.census.gov/data-tools/demo/idb/%23/table?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2022&menu=tableViz&FIPS=US&TABLE_RANGE=2017,2040&TABLE_YEARS=2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040&TABLE_USE_RANGE=Y&TABLE_USE_YEARS=N&TABLE_STEP=1
https://www.census.gov/data-tools/demo/idb/%23/table?COUNTRY_YR_ANIM=2021&COUNTRY_YEAR=2022&menu=tableViz&FIPS=US&TABLE_RANGE=2017,2040&TABLE_YEARS=2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040&TABLE_USE_RANGE=Y&TABLE_USE_YEARS=N&TABLE_STEP=1
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Appendix B. Consumer Price Index 1913-2018 (Base Year 1982 to 1984=100) 

Table 42.  Consumer Price Index 1913-2018 (Base Year 1982 to 1984=100) (BLS) 

Year Annual Year Annual Year Annual 
1913 9.90 1949 23.80 1985 107.60 
1914 10.00 1950 24.10 1986 109.60 
1915 10.10 1951 26.00 1987 113.60 
1916 10.90 1952 26.50 1988 118.30 
1917 12.80 1953 26.70 1989 124.00 
1918 15.10 1954 26.90 1990 130.70 
1919 17.30 1955 26.80 1991 136.20 
1920 20.00 1956 27.20 1992 140.30 
1921 17.90 1957 28.10 1993 144.50 
1922 16.80 1958 28.90 1994 148.20 
1923 17.10 1959 29.10 1995 152.40 
1924 17.10 1960 29.60 1996 156.90 
1925 17.50 1961 29.90 1997 160.50 
1926 17.70 1962 30.20 1998 163.00 
1927 17.40 1963 30.60 1999 166.60 
1928 17.10 1964 31.00 2000 172.20 
1929 17.10 1965 31.50 2001 177.10 
1930 16.70 1966 32.40 2002 179.90 
1931 15.20 1967 33.40 2003 184.00 
1932 13.70 1968 34.80 2004 188.90 
1933 13.00 1969 36.70 2005 195.30 
1934 13.40 1970 38.80 2006 201.60 
1935 13.70 1971 40.50 2007 207.34 
1936 13.90 1972 41.80 2008 215.30 
1937 14.40 1973 44.40 2009 214.54 
1938 14.10 1974 49.30 2010 218.06 
1939 13.90 1975 53.80 2011 224.94 
1940 14.00 1976 56.90 2012 229.59 
1941 14.70 1977 60.60 2013 232.96 
1942 16.30 1978 65.20 2014 236.74 
1943 17.30 1979 72.60 2015 237.02 
1944 17.60 1980 82.40 2016 240.01 
1945 18.00 1981 90.90 2017 245.12 
1946 19.50 1982 96.50 2018 251.11 
1947 22.30 1983 99.60 2019 255.66 
1948 24.10 1984 103.90 2020 258.81 

Source: https://data.bls.gov/timeseries/CUUR0000SA0  Series Id: CUUR0000SA0; Series Title: All items in U.S. city average, all 
urban consumers, not seasonally adjusted. 

https://data.bls.gov/timeseries/CUUR0000SA0
https://data.bls.gov/timeseries/CUUR0000SA0
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Appendix C. Supplementary Note on Regression  
on Number of SARSAT-Related Rescue 

As noted in the text, to estimate the number of impacted individuals, we undertook a regression using data 
on “Number of People Rescued” because of SARSAT. We had 20 years of data indicating the number of 
people rescued each year from 2001 through 2020. To estimate (project) the number of individuals who 
may be rescued during the time frame of the GOES-R analysis (out to 2040), we undertook as regression 
using past data and used the regression results to project into the future. 

Regression is a statistical method used to assess the relationship between variables – in this case the 
number of people rescued and the year in which those rescued occurred. Our goal was to see if there was 
a statistically significant relationship between these in order to project them out into the future. As noted, 
we undertook an ordinary least squares (OLS) regression on these data with U.S. Rescues (the number of 
individuals rescued) as the dependent variable and “Year” as the only independent variable.  

In this simple “model” we are using the available data to “fit” a line (e.g., Y = a + b*X):  

U.S. Rescues = Constant + (Year Number of Rescues) x (Year) 

“U.S. Rescues” is the “dependent variable” in that it depended on the year being examined. The constant 
is the “intercept” or, in this case, the number of rescues if the year was “0” which is obviously outside our 
consideration. The parameter named “Year Number of Rescues” is not the number rescued in any given 
year but the number dependent on the actual number of the year (e.g., 2005 or 2008).  

Because the number of rescues varies considerably year by year and is not a strict linear relationship, the 
model included an error term which we assumed to be zero on average: 

 U.S. Rescues = Constant + (Year Number of Rescues) x (Year) + error 

Ordinary least square (OLS) regression is used to “choose” parameters to “fit” the data to a line while 
minimizing the squared sum of the errors from the observed data. Since there is uncertainty or variation in 
the estimation method, the output reports the estimates of the parameter as well as standard errors of the 
estimates (or estimates of how precise the parameter estimates are). These standard errors (SE) are 
commonly reported in the output in parentheses under the parameter estimates as shown below: 

U.S. Rescues = Constant + (Year Number of Rescues) x (Year) 

 (SE Constant)  (SE Year Number of Rescues) 

The standard errors are used to test the hypothesis that the parameter estimates are equal to zero, which 
would basically mean that they have no relationship or do nothing to help explain the dependent variable 
(Number of Rescues). If the parameters are “significant” below some chosen criteria level (quite often 5% 
or 10%), then it is concluded that there is a relationship between the variables. In this case, finding a 
statistically significant and positive relationship between Number of Rescues and Year Number of Rescues 
means that the number of rescues is increasing each year in a statistically significant manner.  

As reported in section 13.3, the regression model yielded: 
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U.S. Rescues = -12982.737*** + 6.589 Year*** 

 (3888.482)†  (1.934)† 

*** Significant at <1.0% † Standard error of the estimate 

Adjusted R Square 0.358 (n=20) 

The *** appended to each parameter estimate (the Constant and the Year Number of Rescues) indicates 
that these are significant and explanatory in understanding the number of U.S. Rescues. The parameter 
estimate on Year of 6.589 means that (on average) the number of U.S. Rescues has increased by 6.589 
people each year.  

The “adjusted R-squared” is an indication of the reliability of the overall model (all of parameters 
combined). This is also subject to a statistical F-test which indicates overall model significant of 0.3% 
and which is well below any standard criteria of 10% or 5% for evaluating a model such as this. (We note 
though, that this is actually a “time-series” model which does generally have a higher level of significance 
than other non-time-series models and for which we have not evaluated the time series components of the 
statistical model at this time.)  

We then assumed that this linear relationship holds into the future to “predict” how many U.S. Rescues 
there will be over the lifetime of the analysis (out to the year 2040). We did this by simply inserting the 
number “Year” into the model for each year of interest. This generated an estimated number of U.S. 
Rescues for the “observed” years as well as out to the year 2040, as show in Table 43. 

We note that this is only the simplest model that could be used to examine the relationship between years 
and rescues and that there are certainly many other factors influencing the number of rescues over time. 
For purposes of the current analysis, there are any number of other sources of uncertainty in our analysis 
and further examination of these using better models (e.g., more complicated) of the number of U.S. 
Rescues may improve our overall benefit estimates.  

Table 43.  U.S. Rescues – Actual and Fitted from Regression Analysis 

Year Actual U.S. Rescues Fitted U.S. Rescues 
2001 166 202.8 
2002 171 209.4 
2003 224 216.0 
2004 260 222.6 
2005 222 229.2 
2006 272 235.7 

2007 353 242.3 
2008 282 248.9 

2009 195 255.5 
2010 295 262.1 
2011 207 268.7 
2012 263 275.3 

2013 261 281.9 

2014 240 288.5 
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Table 43.  U.S. Rescues – Actual and Fitted from Regression Analysis (cont.) 

Year Actual U.S. Rescues Fitted U.S. Rescues 
2015 250 295.1 
2016 307 301.6 

2017 275 308.2 
2018 340 314.8 
2019 421 321.4 
2020 304 328.0 
2021 n/a 334.6 
2022 n/a 341.2 
2023 n/a 347.8 
2024 n/a 354.4 
2025 n/a 360.9 
2026 n/a 367.5 
2027 n/a 374.1 
2028 n/a 380.7 
2029 n/a 387.3 
2030 n/a 393.9 
2031 n/a 400.5 
2032 n/a 407.1 
2033 n/a 413.7 
2034 n/a 420.3 
2035 n/a 426.8 
2036 n/a 433.4 
2037 n/a 440.0 
2038 n/a 446.6 
2039 n/a 453.2 
2040 n/a 459.8 

 

These numbers are then plotted in Figure 48 (same as Figure 61) where the (wiggly) blue line is 
represents the values actually observed and the straight orange line is represents the number of estimated 
U.S. rescues derived using the regression model.  
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Figure 48.  People saved with SARSAT and projections to 2040 from regression analysis. 

To further explore this, we also undertook regression analysis in the Statistical Analysis System (SAS) 
which allowed us to automatically generate fitted values and confidence intervals on those values. Figure 
49 shows the same information along with 95% confidence intervals on the regression line (the solid 
green and yellow lines) and the 95% confidence intervals on the “predictions” (dashed lines). We show 
this to indicate that there is uncertainty in the projected number of lives saved using the simple regression 
analysis. At this time, we have only used the projected number of lives saved indicated by the solid black 
line. Further uncertainty analysis could account for the 95% prediction confidence intervals as shown by 
the dashed lines as part of a more rigorous sensitivity analysis.  
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Figure 49.  People saved with SARSAT—observed projections to 2040  

from SAS-based regression analysis with confidence limits. 
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Appendix D. Explanation of “How Weather Variability Affects the Economy” 

(COPIED IN FULL FROM LAZO ET AL. 2011 [Lazo et al. 2011] with figure numbers changed to 
maintain numerical order within this report)  

How weather variability affects economic activities can be conceptualized, modeled, and analyzed from 
many different perspectives – no one being the single “right” approach but some more amenable to 
quantitative analysis or policy applications. Therefore, it is important to have a clear definition of weather 
sensitivity that is both based on generally accepted economic theory and amenable to objective, empirical 
analysis. We present the following example of skiing in Colorado to develop a working definition of 
“economic sensitivity to weather variability” consistent with our empirical analysis. Throughout this 
discussion we assume that the sector, and subsequently the sectors in our analysis, are competitive. For 
the level of aggregation in our analysis we feel this is a reasonable assumption. 

Weather affects the economy by affecting both supply and demand for the products and services of an 
industry. We note particularly the consumption (i.e., demand) side of this discussion as consideration of 
weather impacts are usually focused primarily on the production (i.e., supply) side. For this example, 
consider Colorado’s ski industry, a subsector of the services industry. In economics, the quantity 
demanded of a good—total days of skiing—is the relationship between price (e.g., price of lift tickets for 
a day of skiing) and quantity demanded (holding everything else constant). Some other things held 
constant are factors such as tastes, preferences, and income. “Tastes and preferences” means how much 
people want of a particular of good or service based on how much enjoyment they get from it—if skiing 
suddenly became the latest fashion buzz or, alternatively, if people decided skiing was passé, these would 
be considered changes in tastes and preferences. Also, if consumers’ income were higher, demand for 
total skiing days at any given price would be higher because more people could afford to ski.40 It should 
be noted that weather forecasting accuracy is one of the many aspects of consumer demand held constant 
in the demand function. 

Demand for skiing also depends on snow conditions and snow levels, which are determined by weather 
conditions (W). With tastes and preferences and income held constant and snow conditions held constant 
at some initial level W0, the demand curve labeled D(W0) in Figure 50 shows the relationship between 
price of a day skiing and the number of skiing days demanded. The lower the price of a day skiing, the 
more total days skiing people will want with the initial snow conditions, W0, and thus the downward 
sloping demand curve. 

 
40 We implicitly assumed stable tastes and preferences and constant income and did not include these in our modeling; we 
therefore suppress that notation in the figures. 
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Figure 50.  Demand for skiing. 

The quantity of skiing demanded at each price with snow level W0 given tastes and preferences and 
income held constant. The shift in demand for skiing is shown as the quantity of skiing demanded at each 
price shifts with weather W1, i.e., more snow. 

The demand curve shows only the relationship between price and quantity, holding all else constant. 
Changes in price cause movement along the curve. Changing any other relevant factor (such as tastes and 
preferences or income or snow conditions) would shift the curve. Improvements in snow conditions as a 
result of changes in weather (from W0 to W1) will shift the demand curve—better snow means more total 
days of skiing will be demanded at any given price level. This shift is shown in Figure 50 to the new 
demand curve, labeled D(W1). 

Economic theory indicates that the price an individual is willing to pay for an additional unit of a good 
(e.g., an extra day of skiing) is a measure of the additional (i.e., marginal) benefit he receives from 
consuming that additional unit of the good. The height of the demand curve thus shows the marginal 
benefit of consumption at each quantity, so the total area under the curve from zero to q is equal to the 
total benefits of consumption of q.41 

On the supply side, given current technology (current weather impacts mitigation investments and 
weather forecasts are an implicit part of technology), economists would model ski areas as using physical 
capital (K), labor (L), and energy (E) to produce skiing days—the total costs of which also depend on the 
quantity of snow provided by nature (W).42 The higher the price, the more total skiing days that profit-
maximizing firms will supply. For instance, they might open more ski lifts and more terrain for skiers, 
and even more ski areas could be opened. This relationship between prices and total days skiing supplied 
is shown as an upward sloping supply curve in Figure 51. Similar to the demand curve, the quantity 
supplied (e.g., skiing) is shown as the relationship between price and quantity supplied holding all else 

 
41 Technically, the total benefit is the integral under the marginal benefit curve (i.e., the demand curve), from q = 0 to the level of 
consumption q’. Total Benefit =  ∫ Pd(q)dqq=q′

q=0 . 
42 Materials (M) are often considered an input to production along with K, L, and E, but lacking reliable data on materials inputs, 
we suppress M without further discussion. 
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constant (e.g., technology, wage rates, interest rates, energy prices). This relationship is shown in Figure 
51 by the supply curve labeled S(K,L,E;W0).43 

 
Figure 51.  Supply of skiing. 

The quantity of skiing supplied at each price with snow level W0, given costs for capital (K), labor (L), 
and energy (E), and the state of technology. The shift in supply of skiing with better snow, W1, lowers 
production costs and means more skiing supplied at each price than with snow level W0. 

Similar to the relationship of the demand curve to marginal benefits to consumers, the height of the 
supply curve represents the marginal (variable) costs of production to the producer. The total area under 
the curve between zero and q is equal to the total variable costs of production for any given level of 
output, q.44 

Improvements in snow conditions may lower costs to the ski areas (less capital, energy, and labor spent 
on snowmaking) and thus shift the supply curve to the right—more skiing supplied at any given price—as 
shown in Figure 52 by the new supply curve S(K,L,E;W1). 

Returning to the initial level of snow (W0), supply and demand interact in a competitive market to 
determine an equilibrium price (P*) and quantity (Q*), as shown in Figure 52. At this equilibrium, the 
quantity demanded equals the quantity supplied given the consumers’ tastes, preferences, and income, 
given the producers’ technology and costs and given the weather conditions (W0).  

 
43 Because technology changes over time, and generally will lower costs per unit output, we controlled for this in our statistical 
analysis. Technological change is not the focus of the current research, and we don’t discuss it further here. Future research 
should examine whether weather sensitivity has increased or decreased over time, which may be closely related to technological 
change. 
44 Technically, the total variable cost of production is the integral under that marginal cost curve, Ps, i.e., the supply curve,  from 
q = 0 to the level of production q’. Total Variable Cost= ∫ Ps(q)dqq=q′

q=0 . 
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Figure 52.  Equilibrium price and quantity (P* and Q*).  

The green area in Figure 52 represents gross state product at equilibrium (value added or total revenue 
minus total costs). 

In Figure 53, total revenue (TR) is the price times the quantity (P* × Q*). Total variable cost (TVC) is the 
area under the supply curve up to the equilibrium quantity. The difference between total revenue and total 
variable costs (TR – TVC), which we define as gross product, is a measure of the value added by the 
industry. This is the green area in Figure 53 (labeled GSP for Gross State Product defined further below). 
With better snow conditions (from W0 to W1) shifting the supply and demand curves, a new equilibrium 
price (P1) and quantity (Q1) will be reached. At this new equilibrium, gross product from the ski industry 
will change (the yellow area in Figure 53). 

 
Figure 53.  GSP change induced by weather change and supply and demand shifts. 

Gross state product (GSP; also called gross domestic product by state) is “a measurement of a state's 
output; it is the sum of value added from all industries in the state. GDP by state is the state counterpart to 
the Nation's gross domestic product (GDP)” (Bureau of Economic Analysis 2007). In other words, GSP 
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for a sector is total revenue minus total cost for all firms in that sector across the entire state (e.g., see 
Figure 53).  

The skiing industry is part of the recreation sector of the economy, which in turn is a component of the 
larger services supersector. Thinking now about moving from the subsector of skiing to the entire services 
sector, the aggregation of all revenues minus costs for all service industries in Colorado represents the 
GSP for services in Colorado, and across all states this represents the GSP for services in the United 
States. 

We expect other subsectors and sectors to have similar responses to variation in weather, in that other 
sectors will be affected by both shifting supply and demand curves. Of course, weather affects supply and 
demand in very different ways for every sector and subsector and over different spatial and temporal 
scales. For instance, more Colorado snow may mean more skiing but less construction in Colorado, and 
more snow and skiing in Colorado may mean fewer trips to the beach in Hawaii. It follows that GSP may 
go up in one sector in one state and down in another sector in another state in response to a change in 
weather conditions.  

We emphasize that in this discussion and in our analysis reported below, GSP is a monetary measure 
(price times quantity) and not only a quantity measure of impacts of weather. Thus, while there may be 
negative or positive quantity impacts from weather related shifts in demand and supply if these are offset 
by price changes, the impacts from an economic perspective will not be as apparent.  

Based on this conceptual model and underlying economic theories of individual and market demand, firm 
and market supply, market equilibrium, and the concept of gross product as value added, we define and 
measure weather sensitivity as the variability in gross product owing to weather variability, accounting 
for changes in technology and for changes in the level of economic inputs (i.e., capital, labor, and 
energy). Be “accounting for” (also called “controlling for” in economics lingo) we mean we are 
identifying the variability in GSP associated with variability in weather separate from variability in other 
inputs such as capital, labor, energy, technology, and current and past investments in weather impact 
mitigation and weather forecasting.  

 



147 

Appendix E. TPIO NOSIA 2.1 GOES-R Data Analysis for Primary Benefit Areas 

This table provides a sampling of the first four to five top GOES-R-contributing products in each of our 
seven primary benefit areas and Mission Service Areas (MSAs). Most benefit areas/MSAs have many 
more products that comprise the total percentages we used in Phase 2, but we present these few as 
examples/samples. 

Table 44.  Top GOES-R-Contributions Products Seven Primary Benefit Areas and MSAs 

Focus MSA (Mission 
Service Area) 

MSA ID Product Name Product ID Impact of GOES 
on MSA by 

Product 
Air Quality Advanced 

Systems 
Performances 
Evaluation tool 
for NESDIS 

WRN_ASPEN Tropical Cyclone 
Vitals Analysis 
Package: 
NHCHSU 

TCVitals21 
NHCHSU 

0.54% 

Air Quality Advanced 
Systems 
Performances 
Evaluation tool 
for NESDIS 

WRN_ASPEN Tropical Cyclone 
Analysis 
Package Update 

HurrUpdt CPHC 0.52% 

Air Quality Advanced 
Systems 
Performances 
Evaluation tool 
for NESDIS 

WRN_ASPEN Tropical 
Weather 
Outlook: CPHC 

TrpWxOtlk CPHC 0.31% 

Air Quality Advanced 
Systems 
Performances 
Evaluation tool 
for NESDIS 

WRN_ASPEN Tropical Cyclone 
Forecast 
Package 
Combination - 
proxy 

HurrPkg NWS 0.30% 

Air Quality Advanced 
Systems 
Performances 
Evaluation tool 
for NESDIS 

WRN_ASPEN Land Surface 
Temperature 
from GOES 

LndSfcTempSat 
SPB 

0.29% 

Aviation 
Weather 

Aviation 
Weather and 
Volcanic Ash 
National 
Service 
Program 

WRN_AWX Terminal 
Aerodrome 
Forecast 
Combination 

TAF NWS 6.01% 

Aviation 
Weather 

Aviation 
Weather and 
Volcanic Ash 
National 
Service 
Program 

WRN_AWX Significant 
Meteorological 
Information: 
Dust and Sand 

SIGMETDst 
AWCDOB 

1.77% 

Aviation 
Weather 

Aviation 
Weather and 
Volcanic Ash 
National 
Service 
Program 

WRN_AWX Significant 
Meteorological 
Information 
(SIGMET)-
Volcanic Ash 
Combination 

SIGMETAsh NWS 1.27% 
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Focus MSA (Mission 
Service Area) 

MSA ID Product Name Product ID Impact of GOES 
on MSA by 

Product 
Aviation 
Weather 

Aviation 
Weather and 
Volcanic Ash 
National 
Service 
Program 

WRN_AWX Volcanic Ash 
Advisories: SAB 

AshAdv21 SAB 0.92% 

Aviation 
Weather 

Aviation 
Weather and 
Volcanic Ash 
National 
Service 
Program 

WRN_AWX Significant 
Meteorological 
Information 
(SIGMET)-
Turbulence 
Combination 

SIGMETTrbc NWS 0.76% 

Fire Weather Fire Weather 
National 
Service 
Program 

WRN_FWX Incident 
Meteorological 
Forecasts 
Combination 

IMETFldSvc21 
NWS 

1.82% 

Fire Weather Fire Weather 
National 
Service 
Program 

WRN_FWX Red Flag 
Warning 
Combination 

RdFlgWrng NWS 1.77% 

Fire Weather Fire Weather 
National 
Service 
Program 

WRN_FWX Site Specific 
Fire Weather 
Spot Forecast 
Combination 

SptFcst NWS 1.70% 

Fire Weather Fire Weather 
National 
Service 
Program 

WRN_FWX National Fire 
Danger Rating 
System 
Forecast: NIFC - 
proxy 

FireDngrRtgSys_ 
Forecast NIFC 

1.45% 

Fire Weather Fire Weather 
National 
Service 
Program 

WRN_FWX Fire Warning: 
WFO 

FireWrn NWS 1.37% 

Integrated 
Water and 
Prediction 
Information 

Integrated 
Water and 
Prediction 
Information 

WRN_IWPI Flood Watch: 
Forecast Points 

FldWtch-P 
WFOMPX 

1.58% 

Integrated 
Water and 
Prediction 
Information 

Integrated 
Water and 
Prediction 
Information 

WRN_IWPI Flood Warning, 
Areal 
Combination 

FldWrng-A NWS 1.10% 

Integrated 
Water and 
Prediction 
Information 

Integrated 
Water and 
Prediction 
Information 

WRN_IWPI Flash Flood 
Warning and 
Flash Flood 
Statement 
Combination 

FFWrng NWS 0.86% 

Integrated 
Water and 
Prediction 
Information 

Integrated 
Water and 
Prediction 
Information 

WRN_IWPI WFO Flash 
Flood Watches 

FFWtch21 NWS 0.81% 
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Focus MSA (Mission 
Service Area) 

MSA ID Product Name Product ID Impact of GOES 
on MSA by 

Product 
Integrated 
Water and 
Prediction 
Information 

Integrated 
Water and 
Prediction 
Information 

WRN_IWPI Flood Watch, 
Areal 
Combination 

FldWtch-A NWS 0.79% 

Public 
Weather 

Public 
Weather 

WRN_PWX National Digital 
Forecast 
Database 
Combination 

NDFD NWS 4.27% 

Public 
Weather 

Public 
Weather 

WRN_PWX Excessive Heat 
Warning 

ExcsvHtWrng 
WFOLWX 

0.95% 

Public 
Weather 

Public 
Weather 

WRN_PWX Forecast 
Verification 
Guidance 

FcstVerfctn MDL 0.89% 

Public 
Weather 

Public 
Weather 

WRN_PWX Heat Index 
Probability 
Forecast: Day 3-
7 

HtIndxFcst 
WPCFOB 

0.22% 

Severe 
Weather 

Severe 
Weather 
National 
Service 
Program 

WRN_SEV Severe Tornado 
Watch: Storm 
Prediction 
Center 

SvrTorWtch 
SPCOB 

2.96% 

Severe 
Weather 

Severe 
Weather 
National 
Service 
Program 

WRN_SEV Severe 
Thunderstorm 
Watches 
Combination 

SvrTSWtch NWS 2.38% 

Severe 
Weather 

Severe 
Weather 
National 
Service 
Program 

WRN_SEV Severe 
Thunderstorm 
Warnings and 
Severe Weather 
Statements: 
Average 

SvrTSWrnavg 
NWS 

2.35% 

Severe 
Weather 

Severe 
Weather 
National 
Service 
Program 

WRN_SEV Tornado 
Warning 
Combination 

TorWrng NWS 1.72% 

Severe 
Weather 

Severe 
Weather 
National 
Service 
Program 

WRN_SEV Mesoscale 
Discussions: 
SPC 

MesoAnal21 
SPCOB 

1.23% 

Winter 
Weather 

Winter 
Weather 

WRN_WWX Winter Storm 
Warning 
Combination 

WntrStrmWrng 
NWS 

2.14% 

Winter 
Weather 

Winter 
Weather 

WRN_WWX Hard Freeze 
Warning 
Combination 

HrdFzWrng NWS 1.80% 

Winter 
Weather 

Winter 
Weather 

WRN_WWX Blizzard 
Warning 
Combination 

BlzrdWrng NWS 1.77% 
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Focus MSA (Mission 
Service Area) 

MSA ID Product Name Product ID Impact of GOES 
on MSA by 

Product 
Winter 
Weather 

Winter 
Weather 

WRN_WWX Ice Storm 
Warning 
Combination 

IceStrmWrng NWS 1.39% 

Winter 
Weather 

Winter 
Weather 

WRN_WWX Winter Storm 
Watch 
Combination 

WntrStrmWtch 
NWS 

1.17% 

Source: NESDIS TPIO (Hilary Olsen) Email: “Re: Analyses of NOSIA 2.1 GOES-R Data for Primary Benefit Areas,” with attached 
Excel file, April 19, 2022. 
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Appendix F. Additional Background Information on Selected Benefit Areas 

This appendix provides additional background information for selected GOES-R socioeconomic benefit 
areas that we considered a bit too lengthy to include in the main body of this report. See the Phase 1 
report for more detailed information on GOES-R and its payloads. [Lubar et al. 2021] 

F.1 The Value of the GOES-R GLM 

Although most of our focus in this study was on the GOES-R series ABI, we would be remiss if we did 
not at least mention the general benefits of the GLM. 

When the GOES-R GLM is integrated into the warning process for severe thunderstorms or tornado 
warnings, those data may facilitate making the decision to warn earlier or to end warnings sooner. The 
latter reduces unnecessary coverage and false alarms. The rapid update of GLM allows forecasters to 
visualize the rapid intensification of thunderstorms earlier in their development. GLM updates every 20 
seconds nominally, and within NWS operations, every minute, whereas radar average volume scans are 
available about every 5 minutes [Calhoun, 2018, 2019]. If a radar is not functioning, a warning forecaster 
could use the 1-minute Flash Extent Density from GLM to assess rapid intensification of storms. In 
January 2020, the Huntsville, Alabama, WFO relied on GLM to reissue a tornado warning [Goss 2020]. 
GLM can have significant impact on warning decisions in regions of poor radar coverage [Brotzge and 
Erickson, 2010]. GLM data are valuable for forecaster’s monitoring and warning on storms offshore (but 
near the coast) where land-based radar has diminished capacity. Since about 30% of the U.S. population 
lives in coastal counties adjacent to the Atlantic, Gulf, and Pacific coasts, any improvements can 
positively impact a considerable portion of the U.S. population. 

“The value of lightning information has been demonstrated by widespread purchases of lightning 
detection equipment and data from private vendors.” Before the GLM became operational, lightning 
detection was primarily limited to cloud-to-ground detection over land. Although the National Lightning 
Detection Network is robust and highly capable in providing realtime lightning data over land, the GLM 
measurements provide a unique additional resource as viewed from above the cloud tops. The GLM data 
may be available to a wider audience of local athletic officials, farmers, and members of the general 
public engaging in outdoor activities or recreation than that of a private network. These users are less 
likely to have access to paid lightning network data, whereas the GLM data is made freely available. A 
detailed account of lightning deaths in the United States is maintained by the National Lightning Safety 
Council (NLSC) and the NWS. [Jensenius 2020] describes activities leading to deaths from lightning 
strikes in males ages 10 to 60, such as fishing, beach and camping recreation, boating, and yard work. 
Although the GLM data have only been available for about four years, its usage in this arena will only 
continue to grow. [Rudlosky 2020] described a use case where a large outdoor country music concert was 
underway in Alabama in June 2018. NWS forecasters were able to determine the storm was moving away 
from the almost 30,000 people gathered by using the GLM Flash Extent Density product, GOES-R ABI 
imagery and multi-radar, multi-sensor data. 

F.2 GOES-R Applicability to Aviation Meteorology 

Ellrod and Pryor [Ellrod and Pryor 2019] discuss the specific applications of GEO satellite data to 
aviation. “Observations are needed to discern and monitor meteorological parameters required for safe 
and efficient aviation operations. These are clearly needed in the terminal area of major airports and at 
cruise levels along flight routes, but also over wide areas to support a range of operational activities at 
smaller airfields and other remote locations. Helicopter air ambulance operation in remote areas, for 
example, represents a particular aviation weather need that creates significant forecasting challenges” 
[Gultepe et.al. 2019, Sec. 2]. 
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Ellrod and Prior [Ibid] refer to the following specific applications of GEO data: 

• Convective initiation: Thunderstorms can disrupt aircraft by producing enroute hazards such as 
hail or strong turbulence, forcing flights to reroute. This contributes to late arrivals, ground 
delays, and airport gridlock. 

• Locating hazardous thunderstorms over oceanic areas: Avoidance of embedded convection or 
tropical weather systems that can cause severe turbulence or icing. SIGWX charts are issued by 
Area Forecast Centers or SIGMET advisories are issued by Meteorological Watch Offices such 
as the Aviation Weather Center (AWC). GOES data is combined with other cloud-top data and 
ground lightning data to create a Convective Diagnostic Oceanic (CDO) product used at the 
AWC. 

• Lightning activity with oceanic convection: Lightning data is used in remote areas to identify 
thunderstorm activity. Lightning in or near tropical cyclones provides insights into whether the 
storm is strengthening, weakening, or at a steady state. 

• Severe storm identification: Overshooting cloud tops are most often associated with heavy 
rainfall, as noted in ABI imagery. Rapid increases in total lightning flashes from GLM often 
precede severe weather activity. 

• Convective microbursts: Older generations of GOES used sounder data for the nowcasting of 
convective storm potential. Vertical temperature and humidity profiles can be generated from the 
ABI and models. 

• Fog and low cloud detection: Improvements in the ABI such as 2 km IR resolution and repeat 
scans from 1 to 5 minutes yield better detection of valley fog. 

• Estimating time of clearing: Certain airports, such as San Francisco, Seattle, and Los Angeles, are 
prone to weather delays caused by fog. A March 2017 test comparing GOES-16 versus an older 
generation GOES-West satellite allowed determination that clearing would occur more rapidly 
with the former than the latter. The reduction in ground stop time at San Francisco International 
Airport (SFO) yielded a $50K saving to airlines and passengers from the reduced ground stop 
time. 

• Estimating areas of instrument flight rules conditions: Detection of low clouds and fog are 
improved using GOES-R with emissivity derived from data received in two different channels. 

• Upper-level clear air turbulence: “Clear air turbulence (CAT) occurs at high altitudes [6–15 km] 
in a nearly cloud-free atmosphere and is usually associated with vertical wind shears near the jet 
stream and upper-level fronts. It is one of the most common causes of accidents involving large 
commercial jet airliners, resulting in injuries to air crews and passengers” [Ibid, Sec 4.4.1] . 

• Mountain waves: GOES-R imagery clearly shows mountain waves. “When moderate to strong 
winds blow across mountain ridges in the presence of a stable layer near the mountain tops, 
mountain waves occur. When moisture is present near the base of the inversion, wave cloud 
appearing as washboard-like patterns can be seen in imagery” [Ibid, Sec 4.4.2] High-wind 
episodes and reports of moderate to severe turbulence can occur in Colorado and Wyoming. ABI 
band 10 is often used to reveal mountain waves. 
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• Volcanic ash monitoring: GOES-R is well suited to identify the presence of volcanic ash clouds, 
where Volcanic Ash Advisory Centers issue advisories and SIGMETs to pilots in flight. “It has 
been estimated that volcanic ash can be present in air routes at altitudes greater than 9 km [30,000 
feet] on approximately 20 days per year worldwide [Miller and Casadevall, 2000]. GOES-R is 
effective in detecting volcanic eruptions using multiple band products. For operational, real-time 
detection of erupting volcanoes and timely notification for aircraft in adjacent airspace, a 
response time of 5 min or less is desirable” [Ellrod and Pryor, Ibid, Sec. 4.5], Remote sensing of 
sulfur dioxide emitted from volcanoes also can be used to warn aircraft in flight about volcanic 
activity. 

• Aircraft icing: “Aircraft icing is a significant hazard to aircraft leading to loss of performance, 
especially among smaller general aviation and commuter class aircraft. A GOES-R Flight Icing 
Threat index was developed, based on a combination of a satellite-derived icing mask, icing 
probability and intensity” [Ibid, Sec. 5]. 

Although not specifically called out in the Ellrod paper, the movement of smoke from wildfires and 
airborne ash from volcanic eruptions detected by GOES-R imagery that would impact visibility would be 
reported in Terminal Aerodrome Forecasts (TAFs). For example, the Denver/Boulder WFO used GOES-
R imagery to track the movement of smoke from Colorado’s Marshall Fire on December 30, 2021, and 
issued a TAF for Denver International Airport.       

Examples of satellite contributions include GOES-R fog product examples such as instrument flight rules 
(IFR) probabilities. Figure 54 from GOES-17 on December 10, 2021, provided forecasters and Air Traffic 
Controllers situational awareness for fog and low stratus clouds. This image highlights regions where IFR 
conditions are most likely. IFR probabilities for the Pacific U.S. region are available every 5 minutes on 
the Space Science and Engineering Center (SSEC) RealEarth visualization tool from the University of 
Wisconsin-Madison. 



154 

 
Figure 54.  GOES-17 IFR probability over Pacific Northwest, December 10, 2021 (NWS/AWC). 

The nighttime microphysics RGB imagery product can be used for qualitative situational awareness. In 
Figure 54, regions of low clouds are shown in yellow. Furthermore, high clouds to the east of Seattle and 
Portland are obscuring the view of low clouds in that region. For more information on both of these 
examples (and further discussion of fog imagery), see the CIMSS website on the internet at 
https://fusedfog.ssec.wisc.edu 

 

https://fusedfog.ssec.wisc.edu/
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